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Abstract
Mitochondria are responsible for energy production in unicellular and 
multicellular eukaryotes. Apart from their major role in metabolism, 
mitochondria are involved in many other cellular processes. A new 
paradigm is needed to understand aging, aging-related illnesses, 
and complex diseases. Because of the long co-evolution of 
mitochondria with the cells, subtle variations in the function of these 
organelles could influence many organ systems. Understanding 
the extent of this influence will shed light on the pathophysiology 
of some of these diseases. This review will examine the history 
of mitochondrial DNA research, and explain the role mitochondrial 
DNA plays in relation to complex diseases and their outcomes, like 
metabolic diseases, cancer and obesity. Finally, we will explore 
some of the new paradigms used in this research.
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More recently, the role of mitochondria in other cellular 
processes has been explored. For example, in the regulation of the 
cytoplasmic calcium level [4], apoptosis [5], and signal transduction 
[6]. Mitochondria also influence the human phenotype to a higher 
extent than previously assumed [7], since subtle variations in cell 
metabolism affect different organ systems in complex ways [8]. In 
addition, mitochondria play an important role in the aging process 
[9]. In this article we explore to what extent the analysis of mtDNA 
can help us understand certain complex diseases.

Early mtDNA Research
MtDNA possesses certain attributes that makes it ideal for 

specific applications. Early mtDNA research focused on retracing the 
steps our ancestors took when migrating out of Africa and into the 
other continents [10]. This research for example benefitted from the 
negligible recombination and faster mutation rate of mtDNA, which 
resulted in an increased resolution in the analysis of the ancestral 
lineages. Moreover, mtDNA has become a powerful tool in the 
forensic analysis of partially degraded samples because of its higher 
copy number in comparison to nuclear DNA [11].

This research also led to some discoveries in the field of medicine, 
when mutations on the coding mtDNA were found to be responsible 
for non-Mendelian hereditary diseases, which are known nowadays 
as mitochondrial diseases [12]. Efforts then focused on understanding 
how mutations in mtDNA arise, how they are selected in the cell 
population and how they are passed on to the offspring.  Answers to these 
questions came from studying the the phenomenon of mitochondrial 
heteroplasmy, which is partially responsible for the clinical variability 
observed in mitochondrial diseases [13]. Heteroplasmy occurs 
when mitochondrial genomes mutate during embryogenesis, which 
causes the formation of a variety of lineages that coexist in the same 
individual [14]. The intracellular accumulation of mutant mtDNA 
on this stage occurs by a poorly understood selection mechanism. 
Then, the asymmetrical distribution of mutated mitochondria during 
mitosis affects mitochondrial function in the daughter cells, and the 

Introduction
The mitochondrion is a special organelle because it is the 

main producer of cellular energy, has its own DNA (mtDNA), 
transcription and replication machinery [1]. The mitochondrial 
genome has substantial similarity to prokaryotic genomes. Therefore, 
it is believed that the mitochondrion is the remnant of an ancient 
symbiosis between a prokaryote and an eukaryote. First, the 
prokaryotic symbiont was incorporated into the eukaryotic cell 
as an organelle. Next, the majority of the prokaryotic genes (1500 
approximately) moved into the nucleus (In human cells only 37 genes 
remain inside the mitochondrion). [2]. Since that time, mitochondria 
and cell have become so interdependent that nuclear genes involved 
in mitochondrial function must evolve more quickly to keep up with 
the mutation rate of mtDNA. This coevolution has been shown to be 
critical for optimal mitochondrial function and consequently affects 
human health [3].
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tissues they will form, sometimes involving the germinal cell line and 
eventually fixating on the population through genetic drift and/or 
selection [15]. After gestation, the selection process varies according 
to the organ system involved. Although many organ systems are quite 
compliant [16], accumulation of mutated mtDNA scarcely occurs in 
certain cell types. For example, mice studies suggest that oocytes are 
selected based on their mitochondrial competence [17]. Conversely, 
bone marrow cells are subject to a selective pressure that avoids 
mutations which compromise the efficiency of energy production 
[18]. Depending on the time of the mutation and the rate of cellular 
turnover, even a mild genetic variation on a single mitochondrion 
may significantly impact the function of many tissues [19].

The Relationship between mtDNA and Complex 
Diseases

As mtDNA mutates more quickly than nuclear DNA [3], natural 
selection may shape the effect mitochondria have on metabolism and 
even on the functionality of organ systems on a shorter amount of time. 
For example, the mitochondrial efficiency hypothesis proposes that in 
warm climate adapted populations, the evolution of mtDNA favored 
the conversion of energy to adenosine triphosphate (ATP) rather than 
to heat. Such mitochondrial adaptations may be disadvantageous in 
modern western lifestyles characterized by physical inactivity and 
high calorie diets [20]. Thus, the mitochondrial efficiency hypothesis 
could help explain the increased susceptibility to diabetes observed 
in south Asian populations [21]. Likewise, in cold climate adapted 
populations, mtDNA favors heat production at the expense of 
efficient energy conversion, increasing the likelihood that the next 
mutation could severely compromise the cell’s energy production. 
This could explain why some populations like northern Europeans 
are more susceptible to mitochondrial diseases [22] (Figure 1).

This information led to the hypothesis that although disfunctional 
mtDNA can affect more than one organ system subtler mitochondrial 
variations may be more difficult to detect phenotypically. Therefore, 

with the advances in sequencing technologies new research focused 
on searching associations between mtDNA and the so called 
“complex” diseases, known to involve multiple organ systems, and 
of elusive etiology [19]. Because mitochondria play a key role in 
metabolism, diseases like diabetes, metabolic syndrome and obesity 
were initially investigated. Later on, it was found that slight defects in 
the mitochondrial repair system could also help explain the etiology 
of neurodegenerative diseases like Alzheimer [23] and Parkinson’s 
disease [24]. Furthermore, mtDNA is explored in relation to cancer 
because of the role mitochondria play in the regulation of apoptosis 
[25].

Currently, mtDNA sequences can be classified according to the 
haplogroups they belong to. Members of a haplogroup have one or 
more distinct SNP’s in common, which they all inherited from a 
common ancestor. The haplogroups are named according to a letter 
of the alphabet, but their lexicographical order guards no relation to 
their genetic relationships. The most recent common ancestor of all 
mitochondria belongs to haplogroup L. This haplogroup gave rise to 
seven distinct haplogroups (L0-L6), which are currently located in 
Africa. The group of humans that migrated out of Africa belonged 
to haplogroup L3, consequently all non-African haplogroups come 
from this group alone. Haplogroup L3 gave rise to the M and N 
subclades. In particular, European haplogroups (I, J, K, T, U, V, W, 
H, U, and X) emerged from the N subclade. On the other hand, Asian 
haplogroups developed from both the N subclade (A, B, F, and Y) 
and the M subclade (C, D, G, Q, and Z). Finally, during the migration 
to the Americas, haplogroups C and D (from the M subclade) and 
haplogroups A, B and X, (N subclade) became the predominant 
genotypes in this continent [26]. Thus, each haplogroup represents a 
major branching point in the evolutionary tree of the mitochondrial 
genome.

Haplogroups help distinguish populations that have evolved 
independently during recent human history [10]. Because the 
resolution of the haplogroups is limited by the mitochondrial rate 
of mutation, the SNPs located in the mitochondrial control region 
are especially useful because this region’s mutation rate is even faster 
than the rest of the mtDNA [27]. Consequently, if some diseases are 
affected by mitochondrial function, they should behave differently 
depending on the haplogroup of the patient.

In particular, haplogroup N9a was found to be significantly 
related to resistance to metabolic syndrome in Japanese women 
[28]. In southern Italy, haplogroup T was found to be a risk factor 
for morbid obesity [body mass index (BMI) >45kg/m2] [29]. In a 
Taiwanese population, haplogroup B4 was associated with diabetes 
[30]. And in a Caucasian population, haplogroup J increased the risk 
of age related macular degeneration [31] (Table 1).

Nowadays, high throughput DNA analysis tools, like microarrays 
and next generation sequencing are used to verify or reject the 
aforementioned associations. Additionally, new insights into the 
levels of heteroplasmy (which turned out to be higher than previously 
thought) [14], and the screening of larger sample sizes improved 
research quality and statistical power.

For example, full mtDNA sequences could be mined from an 
exome data set composed of 1000 individuals with type 2 diabetes 
and 1000 controls from a Danish population. Among the 2025 
polymorphisms that were found to be associated to diabetes type 2, 
393 had not been reported before [32]. A group in Germany reported 
no association between BMI and coding mtDNA using an array of 119 
SNPs. But based on their results they recommended further analysis 
of control region variants [33]. Interestingly, another team found 
that some polymorphisms in the coding regions were associated with 
BMI, using a larger sample size [34].

The potential of these polymorphisms to be of any use in the 
treatment and understanding of these diseases remains to be seen. 
Currently, the main obstacle to mtDNA research is low sample sizes, 
because of high sequencing costs. Hopefully, better analysis will be 

         

Figure 1: The mitochondrial efficiency hypothesis proposes that mitochondrial 
lineages evolving in different environmental conditions will be shaped 
differently by natural selection, resulting in variations in their mitochondrial 
function. Those variations could explain the increased incidence of certain 
types of diseases. Using the mutation pattern they acquired during evolution, 
associations with such diseases may be made.
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possible in the near future as the amount of data on genome increases 
thanks to next generation sequencing technologies.

The Relationship between mtDNA and Disease 
Outcomes

One of the first clinical uses of mtDNA was the identification of 
mutations responsible for mitochondrial diseases. Apart from helping 
in diagnosis, knowledge of the mutations did not improve treatment 
options significantly. Treatment for these diseases still relies heavily 
on symptomatic control, changes in diet and exercises regimens [35]. 
Nevertheless, data obtained so far about the frequency and location 
of the affecting mutations have provided some insights into these 
diseases. For example, LOHN progression results in visual loss due 
to neuropathy more frequently in haplogroup J in carriers with the 
11778 G to A or the 14484 T to C mutation [36]. Haplogroups have 
also been associated with outcomes in other non-mitochondrial 
diseases. Haplogroups H and R were found to be an independent 
predictor of survival in patients with severe sepsis [37,38]. Similarly, 
haplogroup T was found to be protective of lipoatrophy after highly 
active antiretroviral therapy [39]. Even though most of these findings 
require further validation, the potential role of mtDNA in the 
stratification of patients cannot be ignored.

One of the most controversial topics is the link between mtDNA 
and cancer. In 1920, the Nobel laureate Otto Heinrich Warburg 
hypothesized that tumorigenesis was the result of insufficient cellular 
respiration caused by mitochondrial damage. He postulated this after 
observing the anaerobic metabolism cancer cells possess even in 
the presence of oxygen (Warburg effect). Modern research has now 
revealed how little we knew about the role of mitochondrial function 
in cancer. It is now known that the anaerobic metabolism in cancer 
cells is not a result of mtDNA damage, but a well regulated metabolic 
reprogramming [40]. Additionally, mitochondrial function was 
recently shown to vary between epithelial and stromal breast cancer 
cells [41]. Moreover, a non-intuitive result revealed colon cancer cells 
to have a slower mutation rate than normal tissue [42].

Clearly, because of the complexity of cancer cells, the analysis of 
their mtDNA is bound to be plagued with difficulties. For example, 
rapid tumor growth could be facilitated by an mtDNA mutation. 
This mutation could become ubiquitous in the tumor cells because 
of clonal selection. Nevertheless, using a mathematical model, 
one study reported that non-functional mutations could become 
established similarly during rapid tumor cell growth entirely by 
chance [43]. Despite the difficulties just mentioned, another group 
found mitochondrial mutations to be responsible for the modulation 

of metastatic potential in breast cancer cells [44], this was only 
accomplished by observing a decrease in metastatic potential after 
replacing the mitochondria inside the cancer cells with mitochondria 
from healthy cells.

Even though the analysis of mtDNA inside cancer cells is 
still rudimentary, cancer incidence and progression could still be 
associated to mitochondrial haplogroups in a similar fashion as 
with other diseases. Efforts into this area have found an increased 
predisposition for breast and esophageal cancer in Haplogroup N 
[45]. Also, haplogroup U was found to increase the risk of prostate 
and renal cancer in a North American population [46]. Another 
research team associated the North East Asian haplogroup CZD 
(Comprised of M8a, C, Z, D4 and D5) with good disease-free survival 
in oral squamous cell carcinoma patients [47].

The Way we See Diseases Frames the Way we do 
Research

Justifiably, many of the previous association research efforts have 
focused on one specific disease, and as such established inclusion, 
exclusion, and other criteria to enable association for the disease of 
interest. However, this may not be the best approach, because the 
classification criteria possibly encompass many different diseases 
that share the same clinical outcome. For example, different forms 
of Parkinson have distinct etiology but similar clinical features [48]. 
Also the pathophysiology of a disease may cause other diseases, 
for example, obesity leads to diabetes and hypertension [49]. The 
aforementioned has to be taken into account when designing these 
studies.

Following this line of thinking, associations have been found between 
mtDNA polymorphisms and groups of diseases rather of only a single 
disease [50]. This idea came from the multiorgan effects characteristic 
of mitochondrial diseases, and the insights provided by the research of 
human mitochondrial heteroplasmy conducted so far [14].

Another approach is to sub-classify diseases according to disease 
progression. For example, bacterial infections are classified according 
to their antibiotic resistance [51]. Similarly, associations between 
mtDNA and AIDS progression were found in a European population. 
Haplogroups which had less efficient mitochondrial function 
characterized by more thermogenesis (U5 and J), were associated 
with accelerated disease progression, and more efficient groups 
characterized by lower heat production (H3, H4, H5 and H6) were 
associated with disease protection [52]. This suggests that differences 
in mitochondrial function may affect the evolution of some diseases.

Haplogroups Associations Therapeutic applications
H Predictor of survival in severe sepsis [37] Patient stratification
J, U5 Accelerated AIDS progression [52]
H3, Uk, IWX Protection against AIDS progression [52]
CZD Good disease-free survival in Squamous cell carcinoma patients [47]
R Predictor of survival in severe sepsis [38]
B4 Increased risk of diabetes [30] Biomarker
H Increased risk of ischemic cardiomiopathy [61]

J Increased frequency of optic neuropathy in LHON [36], and age related macular 
degeneration [31], Decreased incidence of ischemic cardiomiopathy [61]

N Increased risk of Breast Cancer and esophageal squamous cell carcinoma [45]
N9a Protective for metabolic syndrome [28]

U
Increased risk of prostate and renal cancer [46]

Reduced risk of exfoliation glaucoma [62]
T Increased risk of morbid obesity [29]
Mutations Associations Therapeutic applications
11778 G to A Leber Hereditary Optic Neuropathy(LHON) [63] Diagnosis
3460 A to G and 14884 T to C Leigh Syndrome [64]
8993 T to G Nuerogenic Muscle weakness, ataxia, and retinitis pigmentosa (NARP) [64]
8344 A to G Myoclonus Epilepsy and Ragged-Red Fibers(MERRF) [65]

3243 A to G Mitochondrial Encephalopathy, lactic acidosis and stroke-like symptoms(MELAS) 
[66]

Table 1: Associations between mitochondrial haplogroups and mtDNA mutations with diseases.
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Mitochondrial Function and Obesity
The World Health Organization defines obesity as the abnormal 

or excessive fat accumulation that may impair health. Clinically a 
BMI of over 30 defines obesity [53].

Nowadays, obesity has become an alarming health problem in 
the new century [54]. Current treatment for obese patients include 
recommendations for lifestyle changes, and diets which may be 
complemented with pharmacological treatment, performing bariatric 
surgery in difficult cases [55]. Weight loss often involves a serious 
commitment, sometimes with suboptimal results, and surely tests the 
level of trust and communication between patient and physician.

Moderate weight loss benefits the prognosis of patients with 
metabolic syndrome, insulin resistance, hypertension [56] and 
diabetes [57]. This is the main reason behind the understanding of 
obesity as a disease with future complications. Even so, a high BMI 
could be nothing more than a non-pathognomonic clinical indicator 
of disease, like fever in other diseases [58]. If it were found that obese 
patients responded in different ways to a standard weight loss strategy, 
the classification into treatment response groups would be justified 
and it would be possible to investigate the role the pathophysiology 
of obesity plays on these differences, giving additional options for 
prevention and treatment of these patients.

To our knowledge, the effect of diets on human mitochondrial 
function has not been studied so far. However, it has been reported 
that the liver mitochondria of mice maintained with calorie 
restriction acquired more cristae [59]. Another work found a change 
in mitochondrial number in orexigenic neurons from mice during 
the transition from fasted to fed state [60].

Following this line of inquiry, we are performing a pilot study 
to find associations between mtDNA and the response to calorie 
restriction diet in an overweight human population. We expect to 
discover polymorphisms that can predict the success of such diet 
which would be a useful biomarker in the stratification of obese 
patients undergoing treatment.

Conclusion
Mitochondria are unusual organelles with unorthodox genomics 

and a long history of co-evolution with eukaryotes. Subtle changes 
in their function could help explain the variability of complex 
diseases across populations and also the relationship with some 
neurodegenerative diseases that appear later in life. Mitochondria can 
be readily distinguished based on the analysis of mtDNA and such 
differentiation can be associated with functioning of the organism. 
Nevertheless, mtDNA research is still limited by lack of data and 
more time is needed to become useful as a biomarker.
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