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Abstract
Epigenetics refers to the study of the changes in gene expression 
that occur without changes in the DNA sequence. There is growing 
evidence that epigenetic modifications such as changes in the levels 
of DNA methylation or post-translational histone modifications are 
involved in the pathogenesis of many human diseases including 
cancer. Oxidative stress as a result of metabolic or environmental 
factors leads to excessive production of reactive oxygen species 
(ROS). ROS plays a role in many human diseases including 
cancer and pulmonary and cardiovascular diseases by promoting 
DNA damage and/or altering signaling pathways. This review 
article summarizes the most recent reports linking both oxidative 
stress and epigenetic mechanisms in the pathogenesis of chronic 
obstructive pulmonary disease (COPD), cardiovascular disease, 
and lung, prostate and colorectal cancers. Here, we emphasize 
the importance that future studies should focus on epigenetic 
intervention strategies to treat diseases associated with oxidative 
stress.
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rapidly reduced to the superoxide anion (O2
•−). Although O2

•−  is 
not reactive itself, it can initiate the generation of ROS. Thus, it is 
necessary that cells have effective mechanisms for removing O2

•− 
and ROS. The generation of ROS may cause a wide range of DNA 
lesions including base modifications, deletions, strand breakage, 
and chromosomal rearrangements [1,2]. Oxidative stress can either 
drive genetic mutations or epigenetically regulate the expression of 
genes. The cellular antioxidants must respond to an overproduction 
of ROS before these highly reactive molecules adversely alter cellular 
structures, including DNA, proteins, and lipids. Severe oxidative 
stress may trigger apoptosis, necrosis, and cell death.

ROS are detoxified within the cell by several kinds of antioxidants 
[3]. Examples of endogenous defenses against ROS include 
the antioxidant enzymes glutathione-S-transferase P (GSTP1), 
glutathione peroxidase, catalase, superoxide dismutase (SOD), 
peroxiredonin, and sulfiredoxin [3]. Examples of low molecular 
weight antioxidants include: glutathione, vitamin C, Vitamin A, and 
vitamin E [3]. Humans have three separate superoxide dismutases 
to reduce the O2

•−
 from the cell: the cytoplasmic Cu/Zn SOD1, the 

mitochondrial manganese SOD2, and the extracellular SOD3 enzyme. 

Most of the chromatin in mammalian cells exists in a condensed, 
transcriptionally silent heterochromatic form. Euchromatin is less 
condensed, and contains most of the actively transcribed genes. 
Epigenetics refers to the study of a stably heritable phenotype that 
results from changes in the chromatin that alter gene expression 
without alterations in the DNA sequence [4]. DNA and histone 
proteins can be chemically modified with epigenetic marks that 
alter the electrostatic nature of the chromatin or alter the affinity 
of chromatin-binding proteins. The chromatin structure, or the 
“epigenome”, is regulated by a large number non-coding RNAs 
and histone-modifying and DNA methylation enzymes [5]. The 
three major mechanisms of epigenetic regulation include DNA 
methylation, post-translational histone modifications, and non-
coding RNAs including micro RNAs.

DNA methylation plays an important role in embryonic 
development, genomic imprinting, X-chromosome inactivation, 
and the preservation of chromosome stability. DNA methylation at 
the promoter region of genes is associated with repression of gene 
transcription by maintaining the chromatin in a closed state [6]. 
During DNA methylation a methyl group is added to the carbon-5 
position of the cytosine pyrimidine ring by DNA methyltransferases 

Introduction
The term “oxidative stress” refers to the state of a cell characterized 

by an imbalance between the production of reactive oxygen species 
(ROS) and the cell’s detoxification defense system, favoring a ROS-
rich environment and/or reduced antioxidant reserves. Under normal 
circumstances, ROS are produced during physiological processes, 
such as cellular respiration, the activation of the arachidonic acid 
cascade and by enzymes, including cytochrome p450, nicotinamide 
adenine dinucleotide (NADH)/Nicotinamide Adenine Dinucleotide 
Phosphate (NADPH) oxidase and nitric oxide synthase. Oxidative 
stress is associated with numerous medical conditions, including 
pulmonary and cardiovascular diseases, as well as cancer.

At ground state, molecular oxygen (O2), required for aerobic 
metabolism, has two unpaired electrons, and can readily accept 
others. The mitochondria’s electron transport chain uses O2  as a 
terminal acceptor for the electrons from NADH and generates a 
proton motive force. However, if leakage of electrons occurs, O2  is 
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to form 5-methylcytosine (5-MeC) [6]. The chromatin is maintained 
in a closed state by recruitment of the methyl-CpG-binding-
domain protein complexes that also contain HDACs that remove 
acetyl groups from the histone’s N-terminal domains and keep 
the chromatin in a closed configuration making the chromatin 
inaccessible to transcription factors and co-activators [7,8]. A family 
of DNA methyltransferase enzymes (DNMTs) is involved in de 
novo DNA methylation and methylation maintenance. DNMT1 is 
predominantly responsible for maintaining cellular levels of CpG 
methylation whereas DNMT3A and DNMT3B are critical for de 
novo methylation during embryogenesis [9]. The absence of 5-MeC 
in DNA promoters allows acetylation of histones permitting a 
number of transcription factor complexes to access the chromatin 
and promote transcription of a specific genomic region [8].

Post-translational histone modifications include lysine 
acetylation, arginine and lysine methylation, serine phosphorylation, 
and lysine ubiquitination, and sumoylation. Lysine acetylation is 
usually associated with transcriptional activation but the functional 
consequences of lysine and arginine methylation depend on 
the specific site of the residue within the histone tail [10-13]. 
For example, methylation of histone H3 at lysine 4 is linked to 
transcriptional activation, whereas methylation of histone H3 at 
lysine 9 or lysine 27 is associated with transcriptional repression 
[11-13]. The post-translational histone modifications allow the 
chromatin to have a dynamic structure and constitute the docking 
site for distinct chromatin-binding proteins; for example, the 
histone acetyltransferases (HATs) and their counterpart, the histone 
deactylases (HDACs), or the histone methyltransferases (HMTases), 
and their opposite, the histone demethylases, direct between a 
transcriptionally active or transcriptionally silent chromatin [14]. 
The “histone code” is now also widely accepted and states that 
specific histone modifications on the same or different histone 
tails act sequentially or in combination regulate the expression of a 
specific region within the chromatin [15]. Dysregulated histone post-
translational modifications have been shown to be important in both 
predictive and prognostic value in various diseases such as cancer 
[16-21].

Non-coding RNAs (ncRNAs) have changed the view of the 
“central dogma” in that these play fundamental roles in regulating 
protein levels by modulating transcription and translation to either 
ultimately increase or decrease protein levels. Small ncRNAs include 
PIWI-interacting RNAs (piRNAs), transition initiation RNAs 
(tiRNAs), and microRNAs (miRNAs). Mid-size ncRNAs include 
small nucleolar RNAs (snoRNAs), promoter upstream transcripts 
(PROMPTS), and transcription start sites (TSS)-associated RNAs 
(TSSa-RNAs). Long-ncRNAs include circular RNAs, transcribed 
ultra-conserved regions (T-URCs) and large intergenicnc RNAs 
(lincRNAs)[22]. miRNAs can regulate downstream gene expression 
by binding to the 3’ untranslated region (UTR) of an mRNA resulting 
in mRNA degradation and translational repression [22,23]. Long-
ncRNAs are mostly known to modulate the chromatin structure, and 
thus change DNA condensation, resulting in less transcription [22]. 
Small and mid-size ncRNA regulate transcription and translation. 
Some long ncRNAs even regulate the expression of other microRNAs.

There is a growing amount of evidence that both epigenetics and 
oxidative stress may be linked in the pathology of various human 
diseases. In this review, we discuss the recent studies on the role 
that epigenetics and oxidative stress play in chronic obstructive 
pulmonary disease (COPD), cardiovascular disease, and lung, 
prostate, and colorectal cancers and how exploring these fields may 
allow the identification of new therapeutic targets.

Chronic Obstructive Pulmonary Disease (COPD)
The lungs are exposed to numerous sources of endogenous 

and exogenous sources of oxidants derived from mitochondrial 
respiration, phagocyte activation, air pollutants, noxious gases, and 
cigarette smoking [24]. Chronic obstructive pulmonary disease 
(COPD) represents the fourth cause of mortality worldwide, and 

is characterized as a group of disorders with similar respiratory 
symptoms, including cough, sputum production, systemic 
inflammation, obstruction of lung airflow, and decreases in 
respiratory function [25]. COPD patients also have an increased risk 
of developing lung cancer.

Cigarette smoke contains a number of free radicals and chemical 
compounds, representing the major source of inhaled ROS leading to 
the deregulated expression of pro-inflammatory genes [26,27]. Recently 
it was found that cigarette smoke post-translationally modifies histone 
deacetylase 2 (HDAC2), a class I histone deacetylase, resulting in a 
reduction of its enzymatic activity [26]. A smoke-dependent HDAC2 
inactivation by post-translational phosphorylation via casein protein 
kinase 2 (CK2) was also reported in macrophages, human bronchial 
and primary small airway lung epithelial cells and, in vivo, in the 
mouse lung [28]. The inactivation by phosphorylation of HDAC2 
results in its ubiquitination and proteosomal degradation. In COPD 
patients, inflammation and cellular senescence are exacerbated by 
tobacco smoke [25]. A decreased HDAC2 activity has been associated 
with inflammation and senescence in COPD patients resulting 
in an increase in H3 and H4 acetylation, the activation of nuclear 
factor of kappa light polypeptide gene enhancer in B-cells (NF-κB) 
transcription factor, and deregulated expression of proinflammatory 
genes [28-30]. Levels of the NAD (+) dependent histone deacetylase 
sirtuin 1 (SIRT1) have also been shown to be reduced in patients with 
COPD, further demonstrating that HDAC expression and oxidative 
stress is associated with COPD [31].

Cardiovascular Disease
Cardiovascular diseases are the leading cause of death in 

industrialized nations [32]. There is a growing body of evidence 
suggesting that both epigenetic modifications and oxidative stress 
may play a role in the pathogenesis of many cardiovascular diseases.

Nitric oxide synthases (NOSs) play an important role in 
cardiovascular diseases and are known to be epigenetically modulated. 
Nitric Oxide (NO) plays an important cardioprotective role against 
cardiovascular diseases by regulating blood pressure, vascular tone, 
and inhibiting platelet aggregation and leukocyte adhesion. NO is 
produced by three isoforms of NOS encoded by separate genes on 
different chromosomes: neuronal NOS (NOS1), inducible NOS 
(iNOS or NOS2), and endothelial NOS (eNOS or NOS3). eNOS is 
constituvely expressed and responsible for the majority of NOS 
produced by the vascular endothelium and, therefore, represents 
the major source of bioactive NO. Methylation plays a role in the 
expression of the various forms of NOS. For example, iNOS is 
expressed in atherosclerotic plaque, but repressed by methylation in 
most tissues. The reaction of NO with superoxide forms peroxynitrite 
and decreases NO bioavailability, which enhances cellular oxidative 
stress. Peroxynitrite increases endothelial dysfunction and stimulates 
prothrombotic effects such as increased platelet reactivity and 
lipid peroxidation. Inactivation of NO by ROS is recognized as a 
key mechanism underlying the reduced NO availability and the 
development of endothelial dysfunction, which may be an important 
contributor to disease pathophysiology.

Cancer
The “epigenetic progenitor” model of human cancer proposed 

by Feinberg, Ohlsson, and Henikoff states that epigenetic changes in 
gene expression impact carcinogenesis through aberrant silencing of 
tumor suppressors genes and the improper activation of oncogenes 
[33]. Further epigenetic derangements and genetic mutations are 
acquired as this epigenetically altered progenitor population expands, 
ultimately leading to carcinogenesis.

Oxidative stress has been clearly linked to the development of 
various cancers. Oncogenic-driven cancer cells generate increased 
ROS as byproducts of their augmented metabolism to promote 
and maintain tumorigenicity [34-36]. Since high levels of ROS can 
induce cell death, cancer cells adapt to ROS stress by upregulating 
intracellular antioxidant proteins in order to maintain ROS levels that 
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allow protumorigenic signaling without resulting in cell death [37-42]. 
In fact, studies have shown that disabling antioxidant mechanisms 
triggers ROS-mediated cell death in many forms of human cancers 
[43-46]. Increasing evidence also has linked the regulation of many 
pathways associated the homeostasis of oxidative stress to epigenetic 
mechanisms [47].

Lung cancer is the leading cause of cancer deaths worldwide and 
only 13% of lung cancer patients survive more than 5 years [47]. 
Non-small cell lung cancers (NSCLCs) represent 80% of all lung 
cancers and are often diagnosed at an advanced stage with poor 
prognosis. SOD1 has been shown to be over expressed at higher 
levels in lung adenocarcinomas, a subtype of NSCLC [48]. SOD1 
converts superoxide to hydrogen peroxide (H2O2) and molecular 
oxygen in the cytosol, the nucleus, and the intermembrane space of 
the mitochondria. SOD1 protects the cell from oxidative stress and 
subsequent cell death by maintaining low levels of superoxide in the 
cytosol. A more recent study reported that inhibition of SOD1 by the 
small molecule ATN-224 reduced tumor burden in a mouse model of 
NSCLC suggesting a potential clinical application for the treatment 
of patients with various forms of NSCLC [49]. ATN-224-dependent 
SOD1 inhibition in various NSCLC cells increased superoxide, 
diminished the enzyme activity of the antioxidant glutathione 
peroxidase, and increased intracellular levels of H2O2.

Elevated levels of HDAC1 mRNA have been reported in more 
advanced stages of this disease (Stage III or IV) [31,50]. Murine 
switch-independent 3-associated (mSin3A), a critical scaffold on 
which the multi-component HDAC co-repressor complex assembles, 
has also been reported to have decreased expression in NSCLC [31,50]. 
Additionally, the ATP-dependent SWI/SNF chromatin remodeling 
complexes members have been reported to be dysregulated in 
NSCLC [31,50]. In NSCLC, mutations are also found within the 
lysine acetyltransferase KAT3A in a small subset of patients and 
polymorphisms have been identified which are associated with an 
increased risk for lung cancer including the lysine methyltransferases 
KMT1B and KMT8 [31]. Polymorphisms in the methyl-CpG binding 
domain 1 (MBD-1) have been associated with an increased risk of 
developing lung cancer [31].

In the United States, prostate cancer (CaP) is the most commonly 
diagnosed non-skin cancer and the second-leading cause of cancer 
deaths [51]. Several studies have reported decreased levels of 
Erythroid 2p45 (NF-E2)-related factor 2 (NRF2) and members 
of the glutathione-S-transferase (GST) mu family in human CaP 
[52]. NRF2 is a basic-region leucine zipper (bZIP) transcription 
factor that regulates the expression of phase II detoxifying/
antioxidant enzymes, including glutathione-S-transferase (GST), 
UDP-glucuronosyltransferase (UGT), hemeoxygenase-1 (HO-1), 
NADPH: quinoneoxidoreductase (NQO), glutamate cysteine ligase 
(CGL) and gamma glutamylcysteine synthase (yGCS), by binding 
in combination with small Maf proteins to antioxidant response 
elements (AREs) in promoter regions [53]. The expression of NRF2 
in prostate tumors from TRAMP mice has also been shown to be 
suppressed epigenetically by promoter CpG methylation and histone 
modifications [54]. The treatment of TRAMP cells with the cytosine 
methylation inhibitor, 5-aza-2-deoxycytidine (5-aza-dC), and the 
histone deacetylase inhibitor trichostatin A (TSA) restored NRF2 
expression and increased the expression of NRF2 and its downstream 
antioxidant and detoxification enzymes [54,55]. Three specific CpG 
sites in the NRF2 promoter were found to be hypermethylated 
in clinical CaP samples [56]. CpG sites showed methylation that 
inhibited the transcriptional activity of NRF2 in LNCap cells but 
LNCaP cells treated with 5-aza/TSA restored the expression of NRF2 
and its downstream target genes, decreased expression levels of 
DNMT and HDAC proteins, increased RNA Pol II and H3Ac, and 
decreased H3K9me3, MBD2, and MeCP2 at CpG sites of the human 
NRF2 promoter [56]. Moreover, the expression and activity of SOD, 
catalase, and GPx have also been found to be decreased in plasma, 
erythrocytes, and CaP tissues confirming the role of NRF2 and its 
target genes in controlling oxidative stress in CaP and confirming 

the existence of an epigenetic mechanism involved in its regulation 
[57,58].

A recent study reported that ROS silenced the tumor suppressor, 
RUNX3, by epigenetic regulation and may be associated with the 
progression of colorectal cancer [59]. The runt-domain transcription 
factor 3 (RUNX3) is known to be a tumor suppressor involved in 
various cancers, including gastric cancers [60-63]. Approximately 
45-60% of human gastric cancers have been reported to display loss 
of RUNX3 expression [64]. The Kang et al. [59] study reported that 
RUNX3 mRNA and protein expressions were down-regulated in 
response to H2O2 in the SNU-407 human colorectal cancer cell line. 
H2O2 treatment increased RUNX3 promoter methylation and the 
ROS scavenger, N-acetylcysteine (NAC) and 5-aza-dC, decreased it. 
The downregulation of RUNX3 was also abolished with pretreatment 
of NAC. 5-aza-dC treatment prevented the decrease in RUNX3 
mRNA and protein levels by H2O2 treatment. Additionally, this 
same study also reported that H2O2 treatment resulted in DNMT1 
and HDAC1 up-regulation with increased expression and activity, 
increased binding of DNMT1 to HDAC1, and increased DNMT1 
binding to the RUNX3 promoter. H2O2 treatment also inhibited the 
nuclear localization of RUNX3, which was also abolished by NAC 
treatment. When RUNX3 is translocated to the nucleus it acts as a 
tumor suppressor; however, cytoplasmic RUNX3 does not elicit 
tumor suppressor activity [65].

DNA methylation and down-regulation of CDX1 has been 
observed in a number of colorectal carcinoma derived cell lines 
and in patient samples. The Zhang et. al. [66] study examined 
whether oxidative stress regulated the expression of the caudal type 
homeobox-1 (CDX1) tumor suppressor gene in colorectal cancer 
cells [66]. The results of the study suggested that silencing of CDX1 
expression by oxidative stress in colorectal cancer cells may be 
mediated by epigenetic mechanisms. Additionally, treatment with 
H2O2 down regulated CDX1 mRNA level and protein expression 
in the T-84 human colorectal cancer cell line. The down regulation 
of CDX1 at the mRNA and protein level induced by H2O2 was 
further abolished by separate treatment of either NAC or 5-aza-dC. 
Treatment with H2O2also increased CDX1 promoter methylation and 
5-aza-dC reversed this effect. In this same study, H2O2 also induced 
the up regulation of DNMT1 and HDAC1 expression and activity.

ROS induced by DNA hypomethylation is an important factor 
for the progression of genomic instability and is, in turn, a source 
of ROS accumulation. One of the main causes of genomic instability 
is thought to be a result of alterations in oxygen metabolism which 
can give rise to increased levels of ROS. Genomic instability arises 
in a few cells capable of sustaining the ROS production. These cells 
accumulate further changes possibly due to epigenetic factors and 
to gene mutations induced by the high ROS levels, acquire selective 
advantage and can proliferate, even with their genomic instability. 
Progeny of these cells may exhibit memory of genome changes that 
can lead to a transformed phenotype [67,68].

Conclusions
Oxidative stress, as a consequence of ROS accumulation, 

increases exponentially with age, in parallel with a decline in the cell 
repair machinery, resulting in many diseases associated with aging 
including cancer and respiratory and cardiovascular diseases [69]. It 
is possible that targeting epigenetic regulators may be an important 
new therapeutic avenue for suppressing oxidative stress in cancer and 
other human diseases. A fundamental question now in the field of 
epigenetics is to understand the biochemical mechanisms underlying 
ROS-dependent regulation of epigenetic modification, which 
may open the door to identifying new therapeutic modalities. For 
example, in oncology, further studies of the epigenetic mark profiles 
from primary tumor samples will provide important information on 
the role of methylation of the CpG islands or other epigenetic marks 
in the promoter regions of tumor suppressor genes. Deciphering the 
methylation status of tumor suppressor genes may contribute to the 
regulation of the transcriptional activity of tumor suppressor genes, 
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which could be used in cancer preventive and therapeutic treatment.
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