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Abstract
An important goal of risk assessment is the determination 
of the minimum dose levels (benchmark doses or BMDs) of 
a hazardous chemical at which a specified bench mark risk 
(BMR) is attained. In practice, more than one experiment 
is often conducted for a hazard to determine the BMD 
values. In such cases, synthesizing all available hazard 
information to produce an average BMD value becomes an 
important task for risk analysts, which can be challenging 
when there is significant between-experiment heterogeneity 
in toxicological effects of the hazard. Statistical methods 
for combining information from different sources that can 
account for data-source heterogeneity play a critical role 
in accomplishing such a task. In this paper, we illustrate 
the use of three statistical techniques for estimating BMD 
values in risk studies involving multiple dose-response 
experiments: The Generalized Estimation Equation (GEE), 
Generalized Linear Mixed Model (GLMM), and meta-
analysis approaches. Monte Carlo simulation studies are 
conducted to compare the performance of these statistical 
methods. An example is given to illustrate the use of the 
methods.
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response in a subject or object from exposure to 
a chemical. A major effort in risk analysis involves 
the statistical characterization of the dose-response 
relationship and the derivation of an estimate of a point 
of departure (POD), which is defined as the lowest dose/
concentration level corresponding to an estimated low 
effect level or no effect level. The bench mark dose 
(BMD) the dose level that causes a specified bench mark 
risk (BMR) is commonly used by risk analysts for setting 
the POD when assessing hazardous exposures [1].

The BMD methodology is a widely used statistical 
technique for assessing toxicological potency of a 
chemical and identifying the BMD in risk assessment. 
It was first introduced by Crump for quantal response 
data [2], but has been subsequently extended with 
definitions for continuous response data [3,4]. In 
this approach a dose-response model describing the 
relationship between exposure and response is fit to 
the data, and this mode list hen used to identify the 
dose level (i.e, the BMD) associated with a specified 
risk level (i.e., the BMR). If the exposure is measured 
as a concentration, benchmark concentration (BMC) 
is used for the exposure point at which a specified 
BMR is attained. To account for the uncertainty in the 
estimation of BMD, it is standard practice to determine 
the one-sided lower 100(1-α)% confidence limit of 
BMD, called the benchmark dose lower limit, or BMDL 
[4].

In practice, more than one experiment is often 
carried out to assess the toxicity of a chemical and 
determine BMD estimates of the chemical; for example, 

Introduction
Quantitative risk assessment is mainly concerned 

about the identification and quantification of adverse 
effects after exposures to hazardous chemicals. The 
adverse effects could be death, birth defect, weight 
loss, cancer, or mutation caused by chemicals. Risk in 
this context is the probability of a specified adverse 
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within and among experiments simultaneously, and can 
be used to provide both individual level (or experiment-
specific) and population averaged estimates of the 
parameters. The third approach is to estimate individual 
BMDs from each experiment by fitting a dose response 
model to the data for each experiment, and combine 
these estimates using a meta-analytic approach [9,10].

Research studies have appeared in literature 
that focused on the estimation of specific potency 
end points in multi-experiment risk assessments. 
Simmons, et al. [11] applied a hierarchical model or 
GLMM in the Bayesian setting to combine mutagenic 
potency estimates from multiple bioassays used for 
environmental risk assessment. Coull, et al. [12] also 
used a Bayesian hierarchical model to study the adverse 
effects of methylmercury by combining BMD estimates 
from multiple studies. Wheeler and Bailer [13] 
proposed a general hierarchical model in a Bayesian 
frame work that can be used to estimate the average 
BMD for response data assumed to be generated from 
the exponential family of distributions. Jiang and Kopp-
Schneider [14] investigated two strategies, the GLMM 
and meta-analysis methods, for summarizing the half 
maximal effective concentration (EC50) estimates from 
multiple experiments. They later expanded their earlier 
work by further examining these two strategies in two 
cases of multiple dose-response experiments: Complete 
dose response relationships are observed in all 
experiments, and complete dose response relationships 
are observed only in a subset of experiments [15].

Quantal response data are commonly encountered 
in dose-response studies where binary outcomes are 
observed and the observations are often in the form of 
proportions associated with each dose level. Most of the 
works mentioned above have focused on continuous 
response data, with less emphasis on nonnormal data 
such as quantal data. Our focus herein concerns the 
estimation of BMD and BMDL in risk studies with quantal 
response data coming from multiple experiments. 
Section 2 describes the three strategies for determining 
the population-level BMDs and BMDLs in risk studies 
involving multiple experiments: The GEE, GLMM, and 
meta-analysis approaches. Section 3 presents simulation 
studies to compare the three strategies, and Sections 
4 provides an illustrative example. A brief discussion is 
given in Section 5.

Methods

Dose response models
Suppose that a series of k experiments is performed 

in a dose response study for a specific hazardous 
chemical. For experiment i(i = 1,...,k), suppose that 
there are ni observations. Let Yij denote the number of 
subjects/objects exhibiting an adverse effect in the ith 
experiment at the jth dose level dij, where i = 1,...,k and 
j = 1,...,ni. We assume that Yij s are binomial variates 

these experiments could be conducted in the same lab 
on different days, or in different labs. The estimated 
dose-response curves are likely to vary from experiment 
to experiment due to various sources of variability in the 
experimental design; this includes biological variability 
(i.e., variability due to testing subjects/objects, 
organisms, etc.) and technical variability (i.e., variability 
due to testing methods, equipment, measurements, 
sample preparation, etc.).

In such cases, a simple pooled analysis - that is, 
an analysis based on a single dataset resulted from 
combining data sets from different sources-fails to take 
into account this between experiment/lab variability. 
Consequently, this practice of data-pooling may result 
in mischaracterized dose-response relationships and 
hence biased BMD estimates (i.e., either too high or low 
estimates having confidence intervals with coverage 
far from the usual nominal level of 95%). As such, it 
is important for risk analysts to employ appropriate 
strategies for combining the hazard information from 
different sources that can account for such data-
source heterogeneity and provide an accurate potency 
assessment to better inform decision-making process.

In the case where dose response data are compiled 
from different experiments, one can calculate the 
individual-level BMD estimates based on the estimated 
dose-response relationship for each experiment 
as well as the overall or population-averaged BMD 
estimates obtained by summarizing BMD estimates 
from all experiments. When tasked with determining 
the potential for a chemical to cause adverse effects to 
humans or the environment, risk assessors are often 
more interested in obtaining a general population 
effect of the chemical, instead of the effect on a single 
subject/object. In this sense, the population-averaged 
BMD estimate is useful, since it can be interpreted 
naturally in a population context, making it easier to 
generalize the results to a much broader population 
than the representative sample. Here, we illustrate the 
use of three statistical techniques for determining the 
population level BMD estimates from multiple dose 
response experiments.

One strategy is to use the Generalized Estimation 
Equation (GEE) approach, which is a popular statistical 
approach to fit a marginal model for correlated data 
analysis [5-7]. It is a population-level approach based on 
a quasi-likelihood function and provides the population-
level estimates of the parameters (i.e., parameters of the 
model as well as derived parameters such as the BMDs). 
An alternative approach is to fit the Generalized Linear 
Mixed-Effects Model (GLMM) for the correlated dose-
response data. The GLMM method [8] is a conditional 
approach by adopting random effects to capture the 
correlation between the observations of the same lab/
experiment (or the same subjects as often the case in 
longitudinal studies). It takes into account the variabilities 
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where ϕ is a scale or over-dispersion parameter 
which may need to be estimated and ν is a known 
variance function. The GEE incorporates a working 
correlation structure to account for the correlation of 
repeated measures. Let Ri(α) be the working correlation 
matrix of Yi, which is completely described by the 
parameter vector α, and let Vi = ϕAi

1/2Ri(α)Ai
1/2 be the 

corresponding working covariance matrix of Yi, where 
Ai is the ni × ni diagonal, matrix with the variance of Yi as 
diagonal element.

GEE yield a consistent estimate, β̂ , for the 
coefficients β , which are the solution of the equation

1

1
( ) 0,

k

i i i i
i

D V Y µ−

=

′ − =∑ 			            (6)

Where Di = ∂µi/∂β′. Moreover, β̂  is asymptotically 
normally distributed with a mean β  and a covariance 
matrix 

1 1

0 1 0

− −
=∑ ∑ ∑ ∑ , where

1 1 1
0 1

1 1
, , ( )

k k

i i i i i i i i
i i

DV D and D V Cov Y V D− − −

= =

′′= =∑ ∑ ∑ ∑        (7)

A so called sandwich estimate of ∑̂  of ∑  can be 
obtained by replacing β, ϕ and α with their consistent 
estimates and the covariance matrix Cov (Yi) with 
( )( )ˆ ˆi i iY Yµ µ ′− −  in equation (7).

Within the context of risk assessment for quantal 
data, the risk, or the response probability of a subject/
object exhibiting an adverse effect is the expectation of 
the binary outcome, and if we use the logit link function 
to connect the mean and the covariates (i.e, the dose 
level of the agent in our case), then the marginal 
mean model in equation (4) with the first-order linear 
predictor can be written as the two-parameter logistic 
model given in equation (1). The variance function 
in equation (5) is given by ν(µij) = Pij(1-Pij). There are a 
number of popular choices for the correlation structure, 
Ri(α), including independence, exchangeable, first-order 
Autoregressive (AR-1), and unstructured. We will fit the 
GEE within dependence and exchangeable correlation 
structures to illustrate the use of the method in the 
current setting.

We denote the estimator of the regression 
coefficients using 0 1( , )GEE GEE GEEβ β β= . Given these 
estimates of coefficients, the risk at a specific dose 
level and the BMD at a given BMR can be estimated 
using equation (2) and equation (3), respectively, by 
substituting the estimates of the regression coefficients 
for β0 and β1. Inference on the BMD can be drawn from 
standard asymptotic theory for the GEE regression 
coefficients estimates. That is, we can construct the 
Wald-type confidence intervals to produce a 100 (1-α)% 
BMDL as ( )ˆ ˆBMD z se BMDα− , where zα is the upper-α 
standard normal critical point and ( )ˆse BMD  is the 
standard error of ˆBMD  found via the delta method.

with parameters Nij and R(dij), where Nij is the number 
of subjects/objects tested and R(dij) is the risk function 
representing the probability that an individual subject/
object will respond adversely at dose level dij. It should 
be noted that a typical design for a quantal response 
risk study employs a series of pre-specified doses 
which are assumed increasing, and there are usually 
several replicates at each dose level in dose response 
experiments.

We write ηij = β0 + β1dij as the first-order linear 
predictor, where β0 and β1 are unknown parameters. 
In the quantal data setting, we use a link function g 
to associate the linear predictor ηij with the response 
probability Pij, g(Pij) = ηij. The inverse link is g-1(ηij) = 
Pij. In our notation, this translates to the risk function, 
Rij = g-1(ηij). Some common link functions for quantal 
response data include the logit link, the probit link, and 
the complementary log link. In this study, we use the 
logit link and the resulting two-parameter logistic model 
has the following form:

0 1log
1

ij
ij

ij

P
d

P
β β= +

−
			            (1)

Under the model in (1), the risk function is given as 
follows:

1
0 1( ) [1 exp( )]ij ijR d dβ β −= + − − 		           (2)

In many risk studies, it is common to further refine 
the risk function R(dij) into the extra risk function, RE(dij), 
for the purpose of assessing risks above back ground. 
The extra risk is defined as RE(dij) = [R(dij)-R(0)]/[1-R(0)], 
where R(0) is an independent background risk and 0 ≤ 
R(0) ≤ 1; that is, it is defined as the risk solely due to 
dose and independent of background risk. The BMD is 
then determined by setting RE(dij) = BMR and solve for 
the dose level. For the two-parameter logistic model in 
equation (1), the BMD is given as

0

1

1 1log
1

BMR eBMD
BMR

β

β

− × +
=  − 

		              (3)

Generalized estimating equations
We begin with an over view of the GEE method for 

correlated or clustered data. Let Yi = (Yi1,...,Yij,...,Yini) 
represent the response vector for the ith cluster 
(i=1,...,k), where we assume the observations from 
the same cluster are correlated. The GEE approach 
relaxes distributional assumptions and only requires 
the specification of the first and second moments. The 
marginal expectations E(Yij) = µij are related to the linear 
predictor ijx β′  by a link function as

( )ij ijg xµ β′= 				            (4)

where β is the unknown parameter vector and xij = 
(xij,1,...,xij,p) is the p-dimensional vector of covariates for the 
jth member of the ith cluster. The variance is specified as

( ) ( )ij ijVan Y vφ µ= 				             (5)

https://doi.org/10.23937/2572-4061.1510058


ISSN: 2572-4061DOI: 10.23937/2572-4061.1510058

Kerns. J Toxicol Risk Assess 2024, 10:058 • Page 4 of 12 •

1( )pa paX X Xβ λ−′ ′= 		                           (9)

Note that the subscript “pa” for λ and β indicates 
that these parameters are population� averaged 
or marginal parameters. Given the estimates of 
conditional coefficients, 0

ˆ esβ  and 1̂
esβ , the marginal 

probabilities, pa
ijP , can be calculated by integrating 

over the distribution of the random effect in the logistic 
random intercept model:

0 1

1ˆ ( ) ,ˆ ˆ1 exp( ( ))
pa

ij es es
ij

P f u du
u dβ β

∞

−∞
=

+ − + +∫       (10)

Where f(u) is the density function for a Normal 
distribution with mean 0 and variance 2

uσ , which can be 
substituted by its estimate, 2ˆuσ . We may approximate 
the integral using Gauss-Hermite quadrature:

1 0 1

1ˆ ,ˆ ˆ1 exp( ( ))

n
pa

ij qes es
q q ij

P
b d

ω
β β=

≈
+ − + +

∑          (11)

where 1{ }n
q qb =  are the set of quadrature points and 

1{ }n
q qw =  are the related weights.

Replacing the marginal probability pa
ijP  in paλ  by its 

estimates given in equation (11) yields an estimate of 
paλ , ˆ paλ , from which marginal regression coefficients, 

0 1
ˆ ˆ ˆ( , )pa pa paβ β β= , can be obtained using equation 

(9). The standard errors of the estimates ˆ paβ  can be 
derived using the delta method. Then, using these 
estimates of marginal regression coefficients and their 
standard errors, we can determine the marginal BMD 
estimate and the Ward-type BMDL for a specific BMR in 
the same way as we did with the GEE method. It should 
be pointed out that although we discussed Hedeker, 
et al.’s method in the logistic random intercept model 
with logit link function and one random effect, their 
method can be applied to the more general cases of 
multiple random effects as well as other link functions; 
see Hedeker, et al. [16] for more details.

Another method to obtain the marginal BMD that we 
consider here also relies on the estimation of marginal 
regression coefficients. For the logistic random intercept 
model, we may use the following approximation 
to obtain the estimates of marginal regression 
coefficients from their conditional counterparts [17]: 

2 2ˆ ˆ ( 1)pa es
i i uβ β σ≈ + , where i = 0, 1, and c = 16√3/

(15π). As with the Hedeker, et al.’s method, the marginal 
BMD and BMDL can be determined based on these 
approximate estimates for the marginal regression 
coefficients.

Meta-analysis models
Meta-analysis is a statistical method for integrating 

the results of multiple studies addressing the same basic 
question, with the aim of averaging the estimates of a 
comparable parameter from each study. It is typically a 
two-step process. In the first step, each study produces 

Logistic random intercept models
The GLMM is an extension of the Generalized 

Linear Model (GLM) for clustered categorical data in 
which the linear predictor contains random effects in 
addition to the fixed effects. It is a conditional model 
that provides an estimate of individual-level (e.g., 
subject/experiment-specific) or conditional effects, 
but can also be used to estimate population-averaged 
effects by summarizing individual-level effects from 
multiple sources. A commonly used GLMM for modeling 
correlated binary outcomes is the Binomial GLMM, in 
which each Yij, given random effects, is assumed to have 
a binomial distribution. In this study, we consider a 
specific type of the Binomial GLMM, a two- parameter 
logistic random intercept models:

0 1

( 1| )
log

1 ( 1| )
ij i

i ij
ij i

P Y u
u d

P Y u
β β

 =
= + + 

− =  
	          (8)

Where ui is the random effect for the ith experiment, 
i = 1,...,k, which is usually assumed to be normally 
distributed with mean 0 and variance σ2

µ.

In the context of risk studies involving multiple 
experiments, the regression coefficients in this logistic 
random intercept model are experiment-specific or 
conditional coefficients, and have the experiment-
specific interpretation conditional on the random effect 
for each experiment. Maximum likelihood methods or 
restricted maximum likelihood methods are often used 
to estimate the coefficients, and they are implemented 
in popular R packages, such as “lme4”. We denote the 
estimates of the coefficients as 0

ˆ esβ  and 1̂
esβ , and the 

estimate of variance for the random effects as 2ˆuσ , 
where the subscript “es” is used to reflect the fact that 
they represent effects of dose levels conditioning on the 
random experiment effect.

Multiple methods for estimating the population-
averaged (or marginal) BMD could be considered. 
Hedeker, et al. [16] proposed a marginalization 
method to produce population-averaged or marginal 
estimates for the regression coefficients from their 
conditional counterparts in GLMMs for longitudinal 
binary outcomes. Here, we employ their method to find 
marginal estimates for 0β  and 1β  in the logistic random 
intercept model, from which the population-averaged 
BMD estimate is determined. Specifically, we write 
the marginal model in equation (1) in a matrix form as 

pa PAXλ β= , where paλ  is a n × 1 vector 
1

( )k
ii

n n
=

= ∑  

containing elements log[ / (1 )]pa pa
ij ijP P−  with pa

ijP  
being the marginal probability, X is the n × 2 covariate 
matrix including a column of ones for the intercept and a 
column of dose levels ijd , and 0 1( , )pa pa paβ β β=  is the 
marginal regression coefficients. This operation yields 
the following equation for describing the relationship 
between the marginal regression coefficients and the 
marginal probabilities:
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[14] conducted simulation studies to investigate the 
impact of these heterogeneity estimators for 2τ
on the estimation of an overall average EC50 value 
(i.e., concentration level of a chemical that gives half-
maximal response), and they found that the choice 
of heterogeneity estimators did not influence the 
estimation of the overall average EC50 value. For a 
description and comparison of these estimators, see 
Jiang and Kopp-schneider [14]. In this study, the Hunter-
Schmidt estimator [20,21] is used.

An approximate 100(1-α)% Wald-type confidence 
interval for θ can be obtained under the assumption 
of asymptotic normality for θ̂ , which yields a 
100(1-α)% BMDL as ˆ ˆ( )z seαθ θ− , where ˆ( )se θ  is 
the standard error of θ̂ , and can be estimated by 

1
ˆˆ ˆ( ) 1/ k

ii
se wθ

=
= ∑ . However, the estimation of the 

standard error of θ̂  depends on ˆ iw , which depends on 
the unknown 2τ . Considering the uncertainty in the 
estimate of 2τ , Hartung and Knapp [22,23] proposed a 
modified Wald-type confidence interval to account for 
such uncertainty:

2
1

1,

1

ˆˆ ( )ˆ
ˆ( 1)

k
i ii

k k
ii

w D
t

k w
α

θ
θ =

−

=

−
−

−
∑

∑
		        (15)

where tk-1,α is the upper α quantile of the t-distribution 
with k-1 degrees of freedom. Jiang and Kopp-Schneider 
[14] compared the performance of the Wald-type 
confidence interval and its modified version in terms of 
coverage probability in simulation studies, along with 
two other methods for adjusting the standard error 
of θ̂ . Their results indicated that the Hartung-Knapp 
method outperformed the other methods by producing 
confidence intervals with coverage probabilities 
being closest to the nominal level, and hence it was 
recommended for use in the construction of confidence 
intervals when using the meta-analysis strategy. 
Therefore, for the purpose of estimating BMDL here, we 
use the modified Wald-type confidence intervals for the 
overall average BMD.

Simulation Study

Simulation design
To compare the performance of the methods 

discussed in Section 2, simulation studies were 
conducted. The specifications for the simulation studies 
were based on the example introduced in the next 
section. We simulated from a two-parameter random 
intercept logistic model given in equation (1) and the 
values of the fixed effects parameters were set as: β0 = 
-2.75 and β1 = 7.50. The dose levels were identical for 
each experiment i (i = 1, . . . , k) at d = 0, 0.075, 0.15, 0.3, 
0.6, 1.2, 1.5, with 8 replicates of response measurements 
at the control level (i.e., d = 0) and 4 replicates for the 
other dose levels. An equal number of trials, n = 5 was 

an estimate of the parameter and its corresponding 
standard error. These results are then used to form the 
data input of a standard fixed or random effects meta-
analysis model in the second step, to find the average 
of parameter estimates. A fixed-effects meta-analysis 
assumes that the true effect is the same in all studies, 
i.e., there is no statistical heterogeneity between 
studies, while for a random-effects meta-analysis model, 
the effects being estimated in the different studies are 
assumed to be different and follow some distribution. 
The latter is the focus of this paper. Here, we describe 
the meta-analysis random-effects model in the context 
of risk assessment, with a specific focus on combining 
BMD estimates from multiple experiments to generate 
a population-level BMD estimate.

For notational convenience, let Di denote the BMD 
estimate obtained by fitting a two-parameter logistic 
model to the data from the ith experiment (i = 1, . . . , k) 
for a specific BMR, and let θi denote the corresponding 
(unknown) true BMD value. Then, Di can be models as

,i i iD eθ= + 				            (12)

where ie  represents the sampling error, 
2(0, )i ie N σ� . For random-effects models, the true 

BMD values θi are assumed as random and modeled as:

i ibθ θ= + 				                         (13)

Where θ is the true average BMD value and bi ∼ 
N(0,τ2) represents the random effect term by which 
the θi deviates from the true average BMD value. The 
variance τ2 represents the amount of heterogeneity 
among the true BMD values of each experiment. 
Combining equations (12) and (13) yields the following 
meta-analytic random effects model:

i i i iD b eθ θ= + + = + ∈  			           (14)

If bi and ei are assumed to be independent, then, 
2 2(0, )i iN σ τ∈ +� , and 2 2(0, )i iD N σ τ+� . With 

the meta-analysis approach, the task of estimating the 
population� averaged BMD and BMDL from a series 
of dose-response experiments can be accomplished by 
finding an estimate of the parameter θ in equation (14) 
and its standard error.

To fit the random-effects model in equation (14), 
a two-step approach can be used [18], in which 2τ
is estimated in the first step and θ is estimated 
via weighted least squares with weights equal to 

2 21/ ( )i iw σ τ= +  in the second step. The estimate of 
weight is 2 2ˆ ˆ ˆ1/ ( )i iw σ τ= + , where 2τ̂  is the estimate 
of 2τ  obtained in the first step, and 2ˆiσ  is the estimated 
within-experiment variance which can be obtained by 
fitting the two-parameter logistic model to the dose-
response data of each experiment. Note that various 
methods are available for estimating the amount of 
heterogeneity, 2τ , some of which are implemented in 
the “metafor” R package [19]. Jiang and Kopp-schneider 
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values (i.e, the BMDL) are below the true values of 
marginal BMD. The error probability α of the CIs was set 
at 0.05 throughout the simulation.

We used the statistical program R (version 4.2.2, R 
Core Team, 2022) for all simulations and computations. 
The GEE marginal regression models were fitted using 
the geeglm function of the R package geepack [24], 
and the logistic random intercept models were fitted 
using the mixed_model function of the R package 
GLMMadaptive [25]. For the meta-analysis approach, 
we fit the logistic dose-response model to the data 
from sub-experiment through the use of the model-
fitting function drm in the R package drc [26] and then 
fit the random effects meta-analytic models using rma 
function of R package metafor [19].

Simulation results
Table 1 and Table 2 present the simulation results 

for the BMD values estimated based on the following 
models: The GEE with independent correlation structure 
(GEE-ind), GEE with exchangeable correlation structure 
(GEE-exc), GLMM using marginalized regression 
coefficients (GLMM-marg), GLMM with approximated 
marginal coefficients (GLMM-app), and meta-analysis 
random-effects model (META), when BMR was 0.05 and 
σu was set to be 0.1 and 0.5 (Table 1), and (Table 2). 
Note that for notational convenience, the general term 
GLMM is used in Sections 3 and 4 to represent the two-
parameter logistic model discussed in Section 2.

The GEE and GLMM methods gave similar simulation 
results in terms of mean, bias, and RMSE of the 
estimates when the variation of the random intercept 
is small (i.e, σu = 0.1, 0.5); however, the GLMM methods 
yielded smaller bias and RMSE for larger variances of 
the random intercept. Between the two GEE methods, 

used for each dose level in all experiments. To study 
the effect of number of experiments performed, three 
values of k were selected: k = 3, 9, 15. Additionally, 
four different values for the standard deviation of the 
random intercept were considered, σu = 0.1, 0.5, 1, 2, 
to examine the influence of different variation of the 
random intercept.

We proceeded in simulating binomial data by 
first generating a random normal variate for each 
experiment i with mean 0 and a pre-defined standard 
deviation σu and then calculating the risk Pij at each dose 
level for each experiment using these random variates 
and the specified fixed effects parameters according to 
equation (2). Binomial data were then generated with 
n = 5 and probability of success Pij, and this simulation 
procedure was repeated 1000 times for each of the 
parameter settings (i.e., for each of three values of k: 
3, 9, 15 and for each of four values of σu: 0.1, 0.5, 1, 2).

We considered a BMR of 0.05, and the “true” 
marginal BMDs corresponding to the chosen BMR were 
obtained by Monte Carto integration; specifically, for 
each parameter setting, we sampled 100,000 numbers 
from a normal distribution conditioning on the pre-
defined, true variance of the random intercept, for 
calculating the “true” marginal risks at specific dose 
levels, which were then used to find the “true” marginal 
BMD for the given BMR value. The point estimates of 
the BMD value obtained by the different methods were 
evaluated with respect to the mean, bias, and root 
mean square error (RMSE) of the estimates. Confidence 
intervals (CIs) for the BMD value constructed using 
the methods discussed in Section 2 were compared 
in terms of coverage probability (CP) of the CIs, which 
was calculated by determining the number of times out 
of 1000 simulations that the lower limits on the BMD 

Table 1: Simulation results for the population-averaged BMD when σu is 0.1 and 0.5

k Method σu = 0.1 σu = 0.5
Mean Bias RMSE Coverage Mean Bias RMSE Coverage

3

GEE-ind 0.0849 0.0012 0.0102 0.8560 0.0834 0.0039 0.0195 0.8360

GEE-exc 0.0847 0.0010 0.0105 0.8540 0.0839 0.0044 0.0199 0.8290

GLMM-marg 0.0847 0.0010 0.0102 0.9990 0.0828 0.0033 0.0194 0.9700

GLMM-app 0.0849 0.0012 0.0102 0.9990 0.0835 0.0040 0.0195 0.9670

META 0.0831 -0.0006 0.0101 0.9540 0.0818 0.0023 0.0192 0.9610

9

GEE-ind 0.0842 0.0005 0.0060 0.9180 0.0819 0.0024 0.0114 0.8840

GEE-exc 0.0842 0.0005 0.0060 0.9100 0.0824 0.0029 0.0117 0.8840

GLMM-marg 0.0842 0.0005 0.0060 0.9940 0.0818 0.0023 0.0124 0.9050

GLMM-app 0.0842 0.0005 0.0060 0.9940 0.0820 0.0025 0.0114 0.8890

META 0.0816 -0.0021 0.0062 0.9720 0.0813 0.0018 0.0115 0.9510

15

GEE-ind 0.0840 0.0003 0.0045 0.9290 0.0812 0.0017 0.0088 0.9150

GEE-exc 0.0840 0.0003 0.0046 0.9300 0.0817 0.0022 0.0092 0.9090

GLMM-marg 0.0840 0.0003 0.0045 0.9850 0.0811 0.0016 0.0088 0.9150

GLMM-app 0.0840 0.0003 0.0045 0.9850 0.0814 0.0019 0.0088 0.9070

META 0.0811 -0.0026 0.0052 0.9810 0.0812 0.0017 0.0092 0.9360
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of k, but below the nominal level (i.e, CP < 0.95) when 
σu = 0.5. This might be explained by the fact that the 
parameter estimates using the GLMM are conditioned 
on the estimated variance of the random effects, which 
are subject to uncertainty, but this uncertainty is not 
accounted in the estimation process. It is noted that 
in general, the GLMM marginalized method produced 
CIs with the coverage probability closer to the nominal 
level than the GLMM approximation method. The CPs 
of the 95% CIs using the meta-analysis approach were 
generally close to the nominal level when σu is small; 
however, the CPs became smaller (CP < 0.93) as σu 
increased for k = 9, 15, while remaining close to the 
nominal level for k = 3.

Overall, the three approaches displayed similar 
performance in terms of mean, bias and RMSE of the 
BMD estimates when there was a small variation in 
the random intercept, but as the random intercept 
variance increased, the GLMM approach showed a 
slight advantage, particularly the GLMM marginalized 
approach. This could be attributed to the GLMM’s 
ability to borrow strength across experiments by 
shrinking fixed effects (i.e., the regression coefficients) 
towards a common mean, which results in improved 
parameter estimates with smaller bias. It appears that 
the meta analysis approach can be recommended when 
the random intercept exhibited small variability, as it 
produces estimates as accurate as the other methods 
but has CPs that are closer to the nominal level. However, 
as the variance of the random intercept increased, it 
became harder to find a clear winner if we take into 
consideration all of the evaluation metrics considered 
(i.e., bias, RMSE, and coverage probabilities), since the 
simulation results varied according to the variance of 
the intercept as well as the number of experiments 
considered.

the GEE method with independent correlation structure 
generally produced estimates with smaller bias and 
RMSE compared with the ones resulted from the GEE 
method with exchangeable correlation structure. This 
could be the result of binomial data for sub-experiments 
in each experiment being independently generated. 
In comparison to the GLMM approximation method, 
the GLMM marginalized approach produced better 
estimates with smaller bias and RMSE, and this became 
more apparent with larger variation of the random 
intercept. The bias in the BMD estimates was small 
(0.0003, 0.0044) for a small value of σu (i.e., σu= 0.1, 
.5), even for k = 3, but it became larger as σu increased. 
We observed that there was consistent reduction in 
both bias and RMSE of the estimates based on the GEE 
and GLMM methods with increasing k in all simulation 
conditions, which was expected.

The simulation results based on the meta-analytic 
approach were comparable to those given by the other 
methods in terms of mean, bias, and RMSE of the BMD 
estimates. For a small σu (i.e, 0.1 and 0.5), the bias was 
small (-0.0026, 0.0023), but it increased with increasing 
σu. However, unlike the GEE and GLMM methods, the 
bias of the estimates resulted from the meta-analytic 
approach did not display a consistent decreasing 
trend as the number of experiments k increased; but 
a consistent decreasing tendency was found with the 
RMSE of the estimates.

The coverage probabilities of the 95% CIs for the 
BMD values based on the GEE methods were generally 
low (CP < 0.93) except under one simulation condition: k 
= 15 and σu = 2 for the GEE with independent correlation 
structure. The GLMM methods produced CIs that had a 
wide range of coverage probabilities; for instance, the 
CPs were high when σu = 0.1 (CP ≥ 0.985) for all values 

k Method σu = 1 σu = 2
Mean Bias RMSE Coverage Mean Bias RMSE Coverage

3

GEE-ind 0.0816 0.0109 0.0348 0.8190 0.0806 0.0206 0.0593 0.8380

GEE-exc 0.0836 0.0130 0.0364 0.8240 0.0873 0.0273 0.0627 0.8488

GLMM-marg 0.0801 0.0095 0.0341 0.8870 0.0784 0.0184 0.0585 0.8879

GLMM-app 0.0819 0.0113 0.0344 0.8690 0.0816 0.0216 0.0583 0.8478

META 0.0815 0.0109 0.0364 0.9469 0.0815 0.0216 0.0677 0.9546

9

GEE-ind 0.0767 0.0061 0.0189 0.8860 0.0685 0.0085 0.0260 0.9250

GEE-exc 0.0784 0.0078 0.0200 0.8970 0.0746 0.0146 0.0305 0.9290

GLMM-marg 0.0761 0.0054 0.0188 0.8990 0.0667 0.0067 0.0257 0.9510

GLMM-app 0.0773 0.0067 0.0189 0.8670 0.0700 0.0100 0.0266 0.8320

META 0.0800 0.0094 0.0222 0.8920 0.0718 0.0118 0.0361 0.9310

15

GEE-ind 0.0750 0.0044 0.0142 0.9040 0.0655 0.0055 0.0189 0.9470

GEE-exc 0.0767 0.0061 0.0154 0.9300 0.0716 0.0116 0.0233 0.9350

GLMM-marg 0.0743 0.0036 0.0141 0.9160 0.0633 0.0033 0.0185 0.9530

GLMM-app 0.0757 0.0051 0.0143 0.8740 0.0670 0.0071 0.0196 0.8340

META 0.0792 0.0086 0.0179 0.8758 0.0681 0.0081 0.0258 0.9220

Table 2: Simulation results for the population-averaged BMD when σu is 1 and 2.
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the following estimates for the marginal regression 
coefficients: 0

ˆ ( arg) 2.79pa mβ = −  and 1̂ ( arg) 7.79pa mβ = . 
We also calculated the estimated marginal regression 
coefficients using the approximation method 
given by Zeger, et al. [17]: 0

ˆ ( ) 2.75pa appoxβ = −  and 
1̂ ( ) 7.42pa appoxβ = . These estimates of marginal 

regression coefficients were then used to estimate the 
BMCs and BMCLs corresponding to BMR = 0.01, 0.05, 
0.10. The results are shown in Table 3.

With the meta-analysis method, the individual 
BMCs and their corresponding standard errors were 
first estimated by fitting the univariate two-parameter 
logistic model to each dose-response data separately. 
The individual experiment-specific fitted dose� response 
curves are shown in Figure 1 along with the observed 
proportions of immobile D. magna neonates for each 
replicate in the study. It is evident that there is a large 
amount of heterogeneity between experiments, since 
analyses based on individual experiments yielded 
considerably different dose-response curves. The 
individual BMC estimates and their standards error 
were obtained for each of the BMR values (i.e., BMR = 
0.01, 0.05, 0.10). We then fit the meta-analytic random-
effects model in equation (14) to combine the individual 
BMC estimates for determining an estimate of overall 
average BMC, and the results are given in Table 3. 
Figure 2 is a forest plot displaying the individual BMC 
estimates and their 95% confidence intervals for a BMR 
of 5%. Also included in the forest plot is the population-
averaged BMC along with the corresponding 95% CI.

Figure 3 displays the fitted dose-response curves 
based on the GEE model within dependence and 
exchangeable correlation structures as well as the 
fitted marginal dose response curves for the GLMM 
constructed using the marginalization and approximation 
approaches. The estimated overall average BMC value is 
also shown in the figure. In this case, these approaches 
produced similar results - i.e., the curves agreed well 
- except for the GEE with exchangeable correlation 
structure, which produced a dose-response curve that 
falls above the other curves, particularly noticeable for 
low concentrations. It is also noted that the GEE method 
with independent correlation structure and the GLMM 
method based on approximation produced virtually 
identical fits.

Example
We illustrate the estimation and inference methods 

for the population-averaged BMD using the data from 
a toxicology experiment reported by Gottardi and 
Cedergreen [27], in which the acute toxicity of the 
parathyroid insecticide α-cypermethrin on the fresh 
water crustacean Daphnia magna was investigated. Nine 
experiments were performed independently at different 
times, and in each experiment, D. magna neonates (< 
1-day-old) were exposed to different concentrations of 
α-cypermethrin (4 replicates, 5 organisms in each) or 
acetone controls (8 replicates, 5 organisms in each) for 
48 hours in M7 medium. Six different concentrations 
(5 non-zero concentrations and control) were used in 
experiments 1-7, and seven concentrations (6 non-zero 
concentrations and control) were used in experiments 8 
and 9. Immobility of D. magna was visually determined 
after 48h of exposure. These data have also been 
used by Jensen, et al. [28] in their R package bmd to 
demonstrate the estimation of BMDs for binomial data 
obtained from a hierarchical design.

We first fit a GEE model in equation (1) with 
exchangeable correlation structure to the data, 
which yielded the following marginal estimates for 
the regression coefficients: 0 ( ) 2.25GEE excβ = −  
and 1 ( ) 7.25GEE excβ = . We also fit a GEE model 
with independent correlation structure, and the 
estimated marginal regression coefficients were 

0 ( ) 2.76GEE indβ = −  and 1 ( ) 7.45GEE indβ = . Three 
common values of BMR were considered, BMR = 0.01, 
0.05, 0.10, and the corresponding estimates of BMC 
and 95% BMCL using the GEE with both independent 
and exchangeable correlation are reported in Table 3. 
Note that we used BMC and BMCL in this case, since 
the exposure level of α-cypermethrin was measured as 
a concentration.

A number of R packages can be used to fit the two 
parameter logistic random intercept model. For our 
purposes here, we used the R package GLMMadaptive, 
in which Hedeker, et al.’s marginalization method of 
the regression parameters in GLMMs is implemented. 
The conditional regression coefficients were estimated 
to be 0

ˆ 3.19ssβ = −  and 1̂ 7.79ssβ = , and the estimated 
variance for the random effect among experiments 
was 2ˆ 1.02uσ = . Hedeker et al.’s method yielded 

Table 3: Estimated BMC and 95% BMCL for a specific BMR.

Method BMR = 0.01 BMR = 0.05 BMR = 0.1

ˆBMC ˆBMCL ˆBMC ˆBMCL ˆBMC ˆBMCL

GEE

independent

exchangeable

0.021

0.014

0.014

0.008

0.085

0.061

0.061

0.036

0.141

0.106

0.105

0.067

GLMM

marginalization

approximation

0.021

0.021

0.011

0.012

0.083

0.085

0.052

0.057

0.138

0.141

0.096

0.104

Meta-analysis 0.018 0.011 0.082 0.054 0.140 0.094
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Figure 1: Individual experiment-specific fitted dose-response curves assuming a two parameter logistic regression 
relationship.
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does not incorporate all of the information on the 
within-subject/group correlation. So, it is important to 
select an appropriate correlation structure to improve 
the efficiency of parameter estimation, particularly in 
small samples. The GEE is a semi-parametric method 
because it does not rely on a fully specified probability 
model, and thus computationally simple relative to the 
maximum likelihood estimation (MLE). The parameter 
estimates from the GEE can be directly interpreted as 
population parameters, but the information about the 
individual/group-specific effect (or the experiment-
specific effect of a hazard in the current study) is lost. 
Therefore, it is most useful when the overall effect of 
a covariate is of primary interest such as, in our case, 
the population-averaged BMD in multi-experiment risk 
studies.

The GLMM approach produces the population-
averaged BMD by simultaneously taking within- and 
between-experiment variability into consideration, and 
unlike the GEE method, it explicitly models the within-
experiment correlation by using random effects. The 
GLMM is a conditional model since it parameterizes 
the conditional distribution of the response given the 
specified random effects. The method is flexible, in the 
sense that it can be used to provide both conditional 
and marginal interpretation of results, both of which 

Discussion
When a series of experiments is performed to 

determine the BMD values for a hazardous chemical, 
risk analysts are often confronted with the challenge of 
synthesizing data from multiple experiments. In such 
cases, appropriate and powerful statistical methods are 
required to perform valid and reliable risk assessment. 
In this paper, we have discussed applications of three 
statistical methods -i.e., the GEE, GLMM, and meta-
analysis approaches- to estimate population-averaged 
BMD values in multi-study risk assessment. More 
specifically, we focused on the two-parameter logistic 
random intercept model to demonstrate the use of 
the GLMM approach, and we used the random-effects 
model as an illustration of the meta-analysis approach.

The GEE is a marginal model popularly applied for 
longitudinal or grouped/clustered data. It only requires 
the specification of the marginal mean model and the 
variance function as well as the link function which 
connects the covariates of interest and marginal means. 
The GEE incorporates a working correlation structure to 
account for the within-group correlation (or the within-
subject correlation in longitudinal study). Although 
the GEE yields consistent parameter estimators even 
when the correlation structure is mis-specified, the 
estimators can be inefficient if the specified structure 
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that when there is little information -either because 
there are a small number of studies or if the studies are 
small- it may not be able to provide reliable estimates 
of the standard error of the estimated overall average 
effect that describes the extent of heterogeneity, which 
may lead to unreliable statistical inferences about the 
overall average effect.

There are a number of issues that warrant further 
research. For example, to quantify the uncertainty in 
the BMD estimates, we used the Wald-type method 
to construct confidence intervals and derive the 
BMDL. The Wald-type construction relies on large 
sample approximation for valid inference, since it is 
based on the assumption of asymptotic normality. 
Therefore, while it is a simple and widely used method 
for building confidence intervals, it may show poor 
performance (that is, failing to achieve the intended 
nominal coverage probability) if the assumption is 
not met. As such, it is important to consider other 
methods to obtain confidence intervals with better 
performance in terms of coverage probability as well 
as the interval width, particularly in cases where the 
number of experiments or the experiment sample 
size is small in multi-experiment risk assessment. One 
possible alternative is the bootstrap method, which is 
a popular approach for producing confidence intervals 
due to its generality; however, it is known to be more 
computationally intensive than its competitors. We also 
realize that the two-parameter logistic random intercept 
model considered in the current study is a simple form 
of the GLMM with only one random effect. In general, 
the GLMM approach can be extended to allow for 
multiple random effects. This is useful when we have 
data with more than one source of random variability, 
but the model then becomes more complex due to 
additional parameters. The added random effects result 
in higher dimensional integrals formed when computing 
marginal likelihood and marginal probabilities, causing 
the model to be even more computationally expensive 
and sometimes may fail to converge. We should further 
point out that various numerical methods can be used to 
approximate the integrals appeared in the GLMM, and 
some of the most commonly used methods include: 1) 
Gaussian quadrature (GQ), which is a classical method 
for approximating the marginal likelihood in GLMMs; 
2) Adaptive Gauss-Hermite quadrature (AQ), which 
is the default method for approximating the marginal 
likelihood in the R package GLMM adaptive; 3) Laplace 
approximation, which is a special case of AQ with only 
a single quadrature point and the default estimation 
method for all models in the popular R package lme4; and 
4) Monte Carlo integration, which is used for calculating 
the marginal probabilities in the GLMM adaptive to 
produce marginal estimates of regression coefficients. 
Each method has its advantages and disadvantages, and 
the choice of method depends on the type of data, the 
specific integral to be evaluated (e.g., the formula of 

can be of importance depending on the specific 
research questions. Another advantage of the GLMM 
is its ability to provide improved parameter estimates 
with lower bias than the other two methods -as 
demonstrated by the simulation results- because the 
random effects allow for borrowing strength across 
multiple experiments. The extent of this is determined 
by experiment similarity; in general, this borrowing 
is more apparent for the experiments that produce 
extremely different results and those that have less 
data. However, the GLMM method has limitations. One 
is that the estimation of the population-averaged BMD 
is conditioning on estimated variance of the random 
effects, but the uncertainty involved in using estimated 
variance components was ignored in the estimation 
process. This may lead to underestimation of the 
uncertainty of the BMD estimates, resulting in narrower 
confidence interval with coverage probabilities smaller 
than the desired nominal level. Another limitation of 
the GLMM relates to its high computational complexity. 
The estimation of the regression parameters of the 
GLMM is more complicated compared with other 
methods such as the GEE. This is because with the 
GLMM, the marginal likelihood is formed by integrating 
over the distribution of random effects so that the 
fixed effects (i.e., the regression parameters) can 
be estimated. Unfortunately, the integral cannot be 
solved analytically in a closed form for binary data, 
and therefore numerical approximation is needed to 
evaluate the marginal likelihood. Moreover, in order 
to determine the population-averaged BMD, marginal 
parameter estimates are generated from its conditional 
counterparts based on the marginal probabilities, which 
are obtained by integrating the probability function 
with respect to the random effects. This integral is again 
intractable and must be approximated, adding more 
computational cost to the method.

Unlike the GLMM approach, the random-effects 
meta-analysis estimates the within and between-
experiment variance separately in two steps. In the 
first step, individual BMD values and within-experiment 
variance are estimated by fitting a dose-response 
model for each experiment. The second step involves 
using a simple linear random effects model to estimate 
a mean value of the individual BMD estimates, taking 
into account the between-experiment variance. The 
random-effects meta-analysis approach is an attractive 
strategy to summarize BMD estimates from multiple 
experiments, due to its simplicity and high computational 
efficiency. It allows for heterogeneity across studies 
that cannot be readily explained by assuming the effects 
underlying different studies follow some distribution. 
The conventional choice of distribution is a normal 
distribution. Unfortunately, in practice it is often hard 
to justify the validity of this distributional assumption, 
and this is a common criticism of the random-effects 
meta-analysis. Another concern with this approach is 
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the integrand, the dimension of the integrals, etc.), and 
amount of computational expense can be tolerated, 
among others. This, along with deciding the optimal 
number of quadrature points to use in the GQ and AGQ, 
remains as an active research area.
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