

REVIEW ARTICLE

A Comparison between Two Pathophysiologically Different yet Microbiologically Similar Lung Diseases: Cystic Fibrosis and Chronic Obstructive Pulmonary Disease

Daniel E Fenker¹, Cameron T McDaniel¹, Warunya Panmanee¹, Ralph J Panos², Eric J Sorscher³, Carleen Sabusap³, John P Clancy⁴ and Daniel J Hassett^{1*}

¹Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, Cincinnati, USA

²Department of Medicine, Cincinnati VA Medical Center, Cincinnati, USA

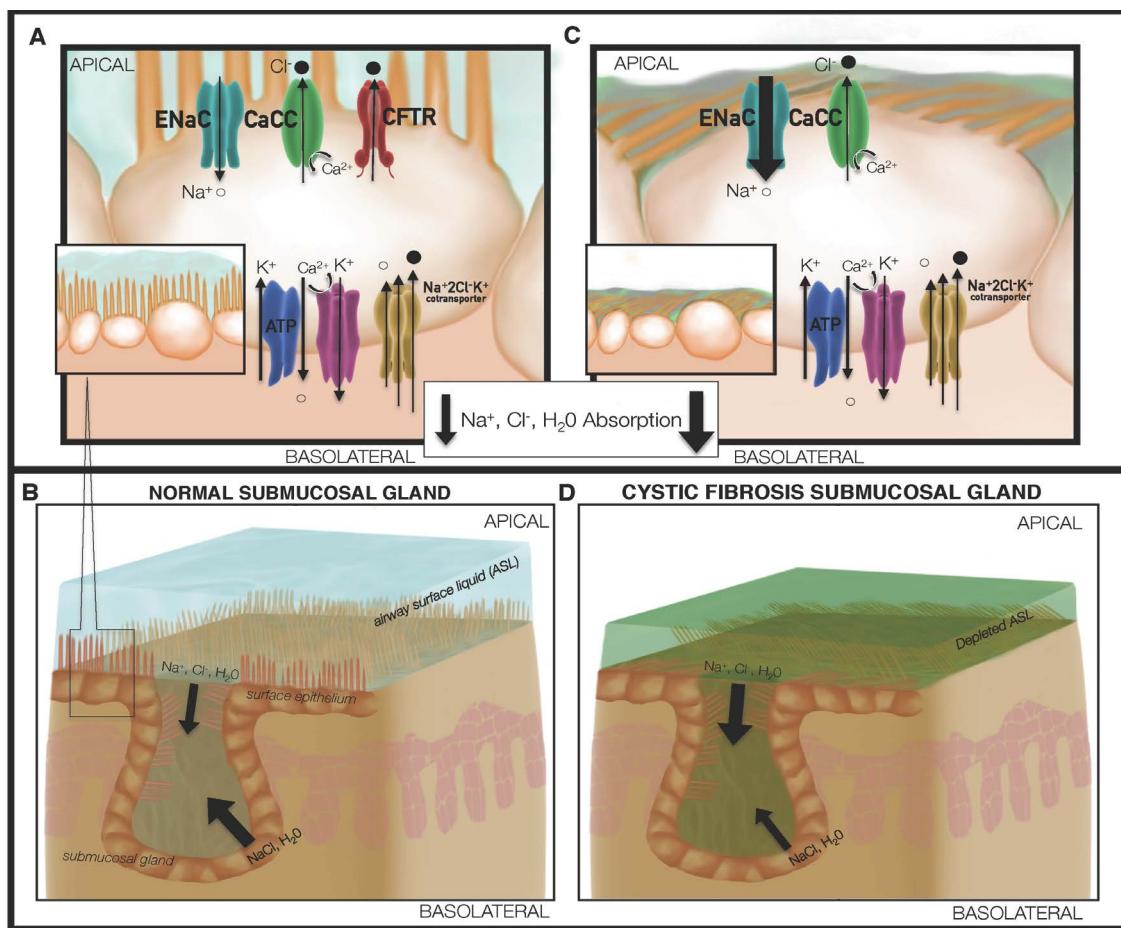
³Department of Pediatrics, Emory University, Atlanta, USA

⁴Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, USA

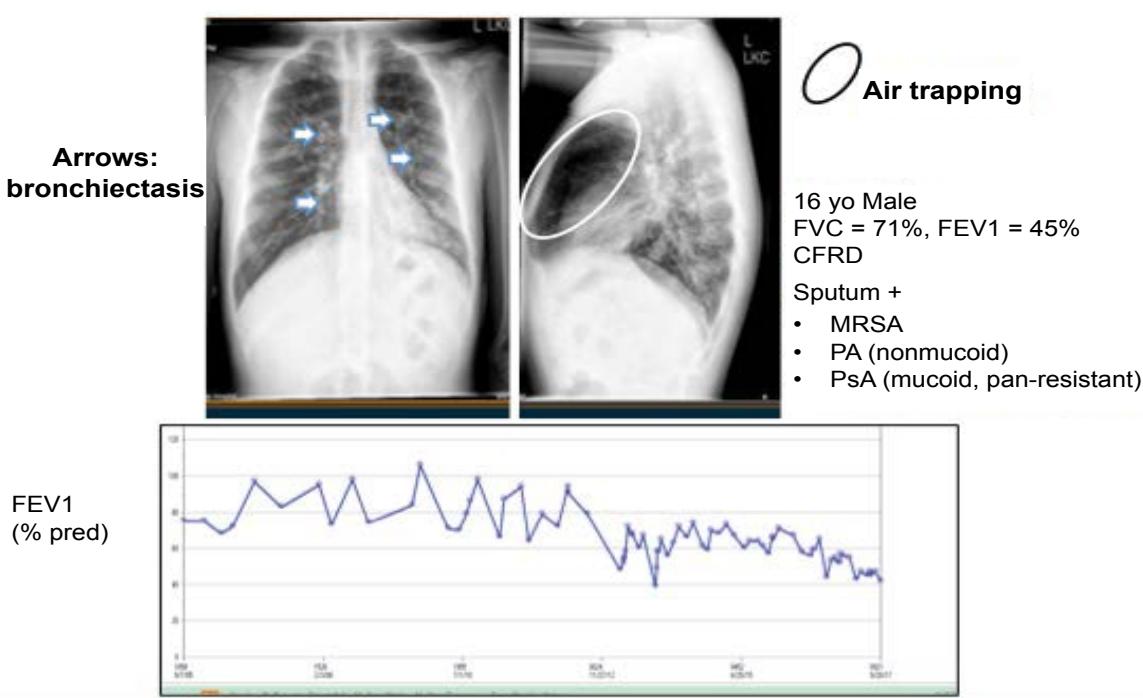
***Corresponding author:** Daniel J Hassett, Ph.D, Professor, Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, 231 Albert Sabin Way, Cincinnati, OH 45267-0524, USA, Tel: 513-558-1154, Fax: 513-558-8474

Abstract

Cystic fibrosis (CF) and chronic obstructive pulmonary disease (COPD) are chronic pulmonary diseases that affect ~70,000 and 251 million individuals worldwide, respectively. Although these two diseases have distinctly different pathophysiologies, both cause chronic respiratory insufficiency that erodes quality of life and causes significant morbidity and eventually death. In both CF and COPD, the respiratory microbiome plays a major contributing role in disease progression and morbidity. Pulmonary pathogens can differ dramatically during various stages of each disease and frequently cause acute worsening of lung function due to disease exacerbation. Despite some similarities, outcome and timing/type of exacerbation can also be quite different between CF and COPD. Given these clinical distinctions, both patients and physicians should be aware of emerging therapeutic options currently being offered or in development for the treatment of lung infections in individuals with CF and COPD. Although interventions are available that prolong life and mitigate morbidity, neither disorder is curable. Both acute and chronic pulmonary infections contribute to an inexorable downward course and may trigger exacerbations, culminating in loss of lung function or respiratory failure. Knowledge of the pulmonary pathogens causing these infections, their clinical presentation, consequences, and management are, therefore, critical. In this review, we compare and contrast CF and COPD, including underlying causes, general outcomes, features of the lung microbiome, and potential treatment strategies.


Keywords

Cystic fibrosis, Chronic obstructive pulmonary disease, Biofilms, Microbiology, Infection

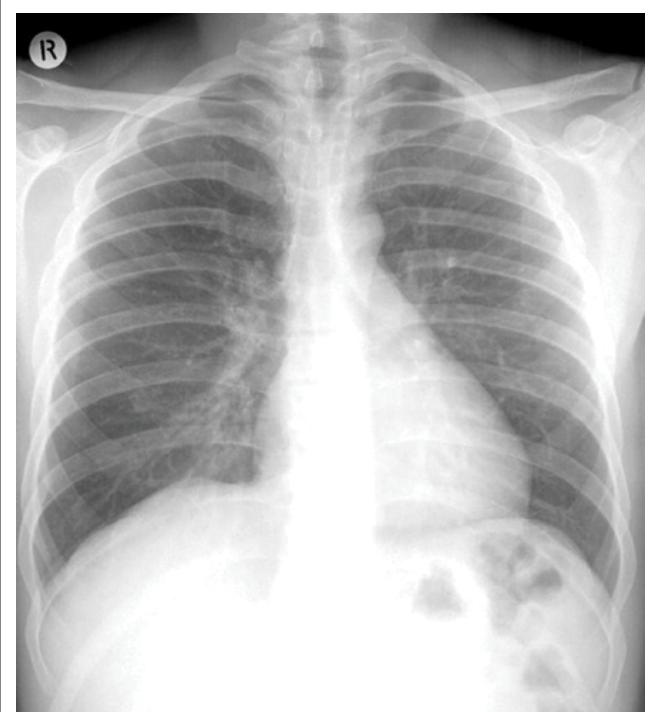

Clinical Perspective

CF is a lethal recessive autosomal disorder observed predominately among Caucasians [1]. The disease is caused by mutation of the cystic fibrosis transmembrane conductance regulator (CFTR), a protein expressed in many epithelia (Figure 1). By far the greatest negative consequence of CF is progressively deteriorating lung function. Loss of CFTR causes complications that also include pancreatitis, hepatic injury, nasal polypsis, digital clubbing, meconium ileus, and other intestinal obstructive symptoms [2]. An important activity of CFTR is to regulate anion (e.g. chloride (Cl⁻) and bicarbonate (HCO₃⁻)) secretion and absorption in epithelial tissues [3]. Without this cellular activity, imbalance of exocrine secretion and composition leads to hyperviscous mucus in numerous secretory organs [4].

CF typically causes pulmonary symptoms that include chronic cough and sputum production, airway obstruction, wheezing and air trapping, and persistent

Figure 1: Loss of CFTR drives defective mucociliary transport in cystic fibrosis. (A) Normal mucus formation is dependent upon chloride, fluid, bicarbonate and pH homeostasis, which is in part maintained via CFTR activity; (B) The submucosal glands in lung tissues produce secretions that enable effective transport of mucus by ciliary beating of airway epithelial cells. In contrast, depletion of CFTR mediated fluid and electrolyte transport; (C) Alters periciliary fluid composition and is associated with enhanced potential difference attributable to ENaC mediated Na⁺ transport. The surface epithelium and submucosal gland abnormalities confer a surface liquid and mucus environment of lower pH, diminished surface liquid depth, and increasing mucous viscosity; (D) Combination of depleted ASL volume and fluidity, coupled with changes in ion balance, allow for the proliferation and reduced clearance of bacteria such as *Pseudomonas aeruginosa*.

Figure 2: CF Chest X-ray and predicted FEV₁ measurements over time.


colonization/infection by a myriad of microorganisms (6). Bacteria involved in such infections include *Staphylococcus aureus*, *Pseudomonas aeruginosa*, and *Burkholderia cepacia*. Others, such as *Haemophilus influenzae*, *Klebsiella pneumoniae*, *Stenotrophomonas maltophilia*, *Achromobacter xylosoxidans*, and non-tuberculous mycobacteria are increasingly recognized as important CF pathogens [5,6].

Nearly 2,000 mutations in CFTR have been documented, many of which are associated with clinical disease (CFTR2 database at cff.org). The most common mutation is Δ508. The phenylalanine at position 508 of the protein [7] is situated in the first CFTR nucleotide binding domain (NBD) and serves to both stabilize the overall NBD and allow proper interactions between NBD1 and downstream CFTR elements such as cytosolic loop 4 [8]. The Δ508 mutation leads to a protein that functions as an ion channel but is not trafficked efficiently to the cell surface and exhibits diminished half-life in the plasma membrane. The Δ508 protein also exhibits defective channel gating function [9]. Unlike normal airways, abnormalities of exocrine secretion lead to hyperviscous mucus, which adheres to the airway surface and apical membranes of numerous epithelia (an example of which is depicted in Figure 2). In airway glands, abnormalities prevent detachment of mucus strands from glandular ostia, compounding mucus viscosity and hindering clearance. Because mucociliary activity represents an essential component of airway defense against infection, the lungs become highly susceptible to bacterial colonization [10].

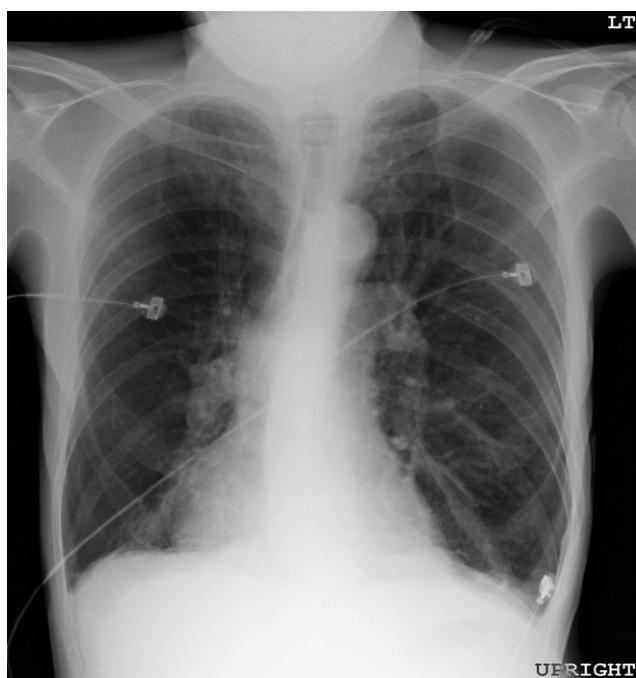
The lifespan of patients with CF has dramatically increased due to new therapeutic interventions and improved understanding of the disease (www.cff.org). In particular, median life expectancy in 1985 was < 25 years, and by 2017 had reached > 40 years. Despite these advances, morbidity and mortality attributable to respiratory infection remain prevalent. An enduring priority to increase the survival of individuals with CF has been the exploration of new and innovative antimicrobial, anti-infective, mucolytic, and other treatment strategies.

Chronic obstructive pulmonary disease

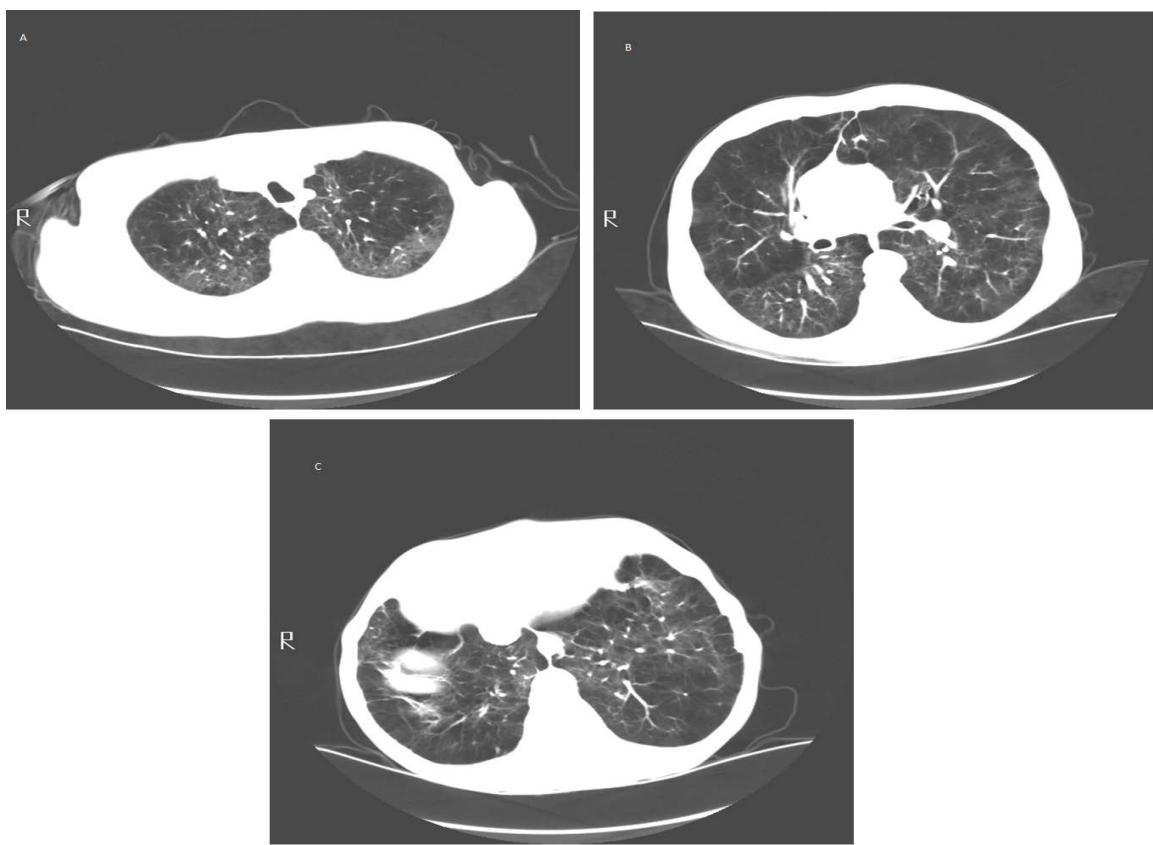
Chronic obstructive pulmonary disease (COPD) is an increasingly prevalent chronic disease affecting Americans and others worldwide, that is rapidly becoming a leading cause of death internationally [11,12]. However, unlike CF, COPD is a potentially preventable and non-lethal (with proper patient compliance) and a treatable disease that is usually characterized by airflow limitation, intensified lung and systemic inflammation, episodic exacerbations, and comorbidities [13]. The systemic nature of COPD is very different from that of CF. The manifestation of systemic COPD includes a variety of factors that are not limited to cardiovascular disease, osteoporosis, depression,

Figure 3: Normal posterior anterior chest radiograph. Vascular markings within respiratory parenchyma attenuate in the lateral one third of both lungs. The diaphragms have a dome shaped configuration.

weight loss and skeletal muscle issues [14]. Until recently, airflow limitation, a reduction in the exhalation of air due to increased airway resistance and dynamic airway collapse has been an essential element for the diagnosis of COPD. Airflow limitation is quantified by the ratio of FEV_1 (forced expiratory volume in 1 sec) to FVC (forced vital capacity) and is present when this ratio is less than a threshold value. Typical threshold values are an absolute value of 0.7 or the lower limit of normal (LLN). The LLN represents the 5th percentile of the distribution of the FEV_1/FVC ratio in nonsmokers with no lung disease. Recent investigations show that some individuals with radiographic evidence of emphysema may not have physiologic evidence of airflow limitation [15]. COPD is commonly viewed as two processes, chronic bronchitis and emphysema, with overlapping clinical, radiographic, and physiologic findings (please refer to Figure 3, Figure 4 and Figure 5 for examples).


There may be a connection between COPD-bronchiectasis as a subtype of COPD, but this notion remains unclear. Thus, at this time, it is premature to classify COPD-bronchiectasis as a subtype of COPD and therefore comparison between CF and COPD-bronchiectasis lacks merit. The only paper that comes remotely close to such a posit is by Blasi, et al. [16]. Still, epidemiologic studies of COPD implicate multiple etiologic risk factors including allergies and hyper-responsiveness to airborne particulates, as well as recurrent bronchopulmonary infections [17]. But by far, the single most deleterious cause is long-term exposure to tobacco smoke. In 2011, the prevalence of COPD among US adults was 5.2% for men and 6.7%

for women and 76% of those individuals with self-identified COPD were current or former smokers [18]. COPD normally presents later in life after prolonged risk factor exposure. Although tobacco smoke inhalation is


the major risk factor for the development of COPD, a comparatively small proportion of smokers develop the condition. Nearly one quarter of individuals with COPD have no smoking history [19]. Indoor and outdoor air pollution, workplace aerosolized chemicals, dusts, and fumes, and respiratory infections including tuberculosis are other exposures associated with the development of COPD [19-21]. Genetic factors predisposing individuals to COPD are poorly understood.

The primary clinical manifestations of COPD are breathlessness, cough, and sputum production dyspnea [22]. Breathlessness is caused mainly by dynamic hyperinflation with exertion which produces air trapping and diminished tidal volumes. Airflow limitation may also contribute to shortness of breath. Cough and sputum production are caused by hyperplasia and hypertrophy of mucus producing airway epithelial cells, colonization of the lower airway by bacterial pathogens, and the eventual structural derangement of the airways leading to the development of bronchiectasis (permanent enlargement and structural alteration of the lower bronchi) [23].

COPD is primarily a pulmonary disorder but may also affect multiple other organ systems. Much of the initial morbidity associated with COPD is caused by cardiovascular and other manifestations believed to be mediated through systemic inflammation. Other associated clinical findings include musculoskeletal

Figure 4: Chest radiograph of an individual with severe emphysema. Lung fields are greatly enlarged and exhibit paucity of vascular markings throughout. Diaphragms are flattened and have lost their normal dome configuration.

Figure 5: (A) Upper lung zone; (B) Mid lung zone; (C) Lower lung zone. Computed tomography of an individual with severe emphysema. Lung parenchyma is destroyed and replaced by cysts and blebs. Areas of more normal lung are compressed by hyperinflated emphysematous lung tissue.

disorders (osteopenia and osteoporosis that culminate in fractures), diabetes, anemia of chronic inflammation, and psychological effects such as anxiety and depression due to chronic breathlessness, reduced physical function, and social isolation. Lung inflammation and its subsequent systemic dissemination in COPD has also been implicated as a contributor to coronary artery disease, congestive heart failure, obesity, endocrinologic dysfunction, osteoporosis, and other health issues [24].

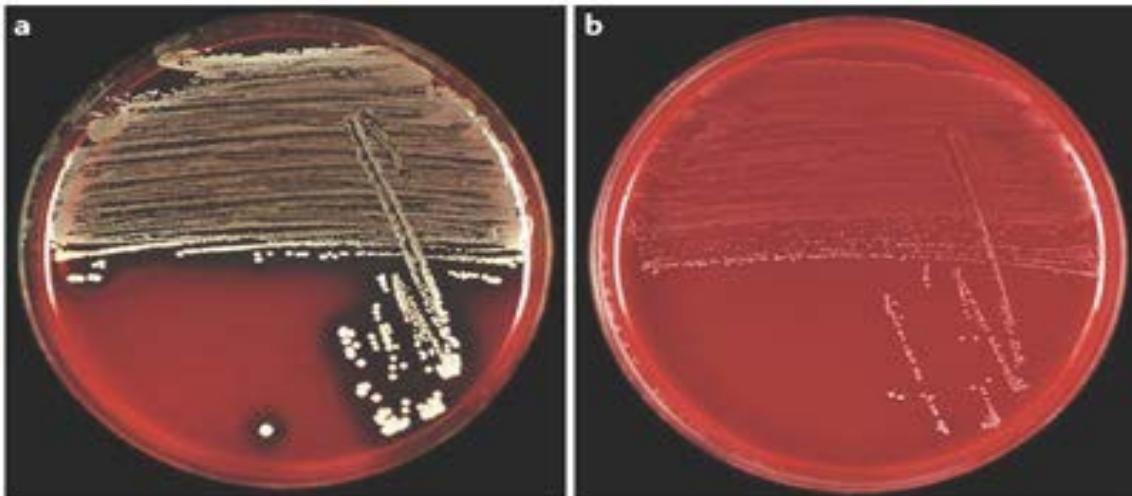
Prevention of COPD through smoking avoidance or cessation is the most important element of COPD management. Once the disorder has been correctly diagnosed, management is both pharmacologic and nonpharmacologic. COPD is treatable but cannot be reversed due to chronic lung remodeling and permanent anatomic destruction.

COPD medication management begins with a short acting bronchodilator and then gradually escalates with the addition of long acting anticholinergics, long acting beta agonists, and finally inhaled corticosteroids. Antibiotics and systemic steroids are often used to treat acute COPD exacerbations due to infections. Selective phosphodiesterase inhibitors and macrolide antibiotics may be used for individuals with frequent exacerbations. Not adhering to treatments is associated with a 40% increased likelihood of hospitalization [25]. Non-pharmacologic therapies include supplemental oxygen, vaccinations, lung volume reduction surgery, lung transplantation, and pulmonary rehabilitation.

COPD exacerbations occur episodically throughout the disease course and are characterized by increased respiratory symptoms, especially breathlessness, cough, and sputum production, that are more pronounced than their usual day to day variation [26]. Similar to CF, patients with COPD exhibit chronic inflammation and hypersecretion of mucus that may become more pronounced during exacerbations [17]. Mucus overproduction is associated with mucosal gland hypertrophy, increased numbers of epithelial goblet cells, and damaged cilia. This excessive mucus and deranged mucociliary clearance mechanism may manifest clinically as increased and forceful coughing with excessive phlegm production and may contribute to bacterial colonization and infection of the lower airways that propagate a cycle of progressive inflammation and derangement of lung structure. Just as in CF, disease worsening is associated with colonization and invasion of respiratory tissue by bacterial pathogens.

Pathogenic bacteria in the CF lungs

The lungs of CF patients become chronically infected with a myriad (potentially > 100 different genera) of bacteria, leading to a poorer clinical prognosis [27]. Major pathogens include members of non-tubercle mycobacteria (*Mycobacterium abscessus*, *M. avium*, *M. intracellulare*, *M. fortuitum*, *M. gordonae*, *M. kansasii*), *Staph-*


ylococcus aureus, *Pseudomonas aeruginosa*, *Burkholderia cepacia* complex (BCC, genomovar I (*B. cepacia*), II (*B. multivorans*), III (*B. cenocepacia*), IV (*B. stabilis*), V (*B. vietnamiensis*), VI (*B. dolosa*), VII (*B. ambifaria*), VIII (*B. anthina*), IX (*B. pyrrocinia*), *Burkholderia gladioli* and *Burkholderia pseudomallei*). Minor pathogens include *Achromobacter xylosoxidans*, *Inquilinus limosus*, *Ralstonia* sp., *Pandorea apista*, *Streptococcus pneumoniae*, *Stenotrophomonas maltophilia*, *Haemophilus influenzae* and *Bordetella bronchiseptica*. In addition to the aforementioned bacteria, strict anaerobes have increasingly been encountered and include the genera, *Prevotella*, *Veillonella*, *Propionibacterium* and *Actinomyces*. These organisms were derived from a superb microbiological CF assessment by Coutinho, et al. [28].

With this information in hand, we must emphasize that the predominant infecting organisms change with age; for example, *S. aureus* is often a major species during childhood. As CF patients become older, the opportunistic pathogen *P. aeruginosa* becomes more firmly established, eventually outgrowing most other species, which remain present in lesser numbers [29,30].

Patients given antimicrobial treatment focused on *P. aeruginosa* eradication may develop niches that other pathogens occupy, leading to a remarkably complicated biologic flora [31]. *S. aureus*, and the more resilient methicillin-resistant *S. aureus* (MRSA), are Gram-positive cocci that are isolated from 71% and 26% of CF patients, respectively. The prevalence of these organisms has been increasing.

As described above, *S. aureus* is typically an early colonizer of CF lungs, likely because the organism is a common commensal on skin and in the respiratory tract of humans. Colonization occurs at an early age and is usually present at some level throughout the life of patients with the disease. Before standardized use of antibiotic regimens such as respiratory flucloxacillin and dicloxacillin [32], *S. aureus* was the leading cause of death in CF. This organism is now managed with more effective antimicrobials. It is important to note, however, that high staphylocidal activity for an antibiotic may not be sufficient to eradicate an infection, in part due to inability of cilia to properly expel viscous and infected mucus from the lungs of individuals with CF [33].

S. aureus isolates from individuals with CF have been shown to exhibit a distinct "small colony" morphology [34,35] (Figure 6). Colonies of this type have decreased virulence properties, produce less alpha toxin (a hemolytic protein), and elaborate no pigment [36]. This phenotype may help mask the organism from recognition by the immune system, thereby preventing clearance. In addition, small colony variants have increased antibiotic resistance properties, and exposure to aminoglycosides (e.g. gentamicin) promotes conversion to the phenotype. Even after selective pressure elicited by antibiotic treatment is removed,

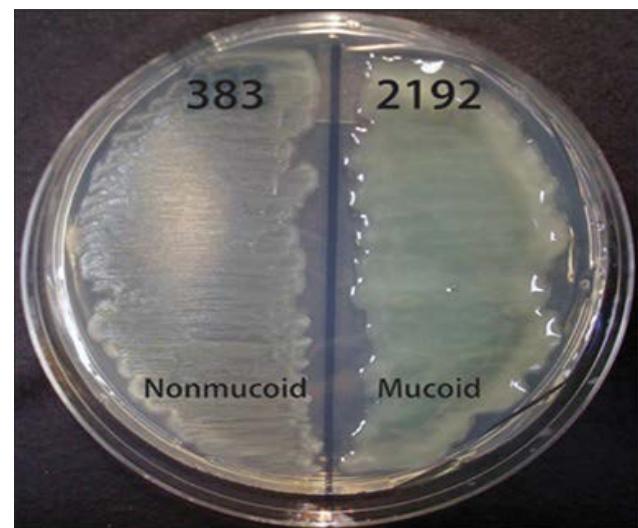

Copyright © 2006 Nature Publishing Group
Nature Reviews | Microbiology

Figure 6: (A) Normal *S. aureus*; (B) *S. aureus* with small colony phenotype. With permission from [190]. Permissions from Copyright Clearance Center - Rightslink, order number: 4336070213221.

small colony morphology persists [34-37]. Antibiotic resistance in this setting may result from lower bacterial uptake of aminoglycosides and/or use of exogenous nucleic acids to combat the effect of antifolates [38,39].

As CF patients become older, *P. aeruginosa* typically becomes more prominent despite aggressive antibiotic treatment [40,41]. Resistance is due in part to ability of the organism to form highly antibiotic- and phagocyte-refractory biofilms - complex microbial communities enmeshed within the thick CF airway mucus. The formation of biofilms is associated with the ability to quorum sense (QS), a process of inter-cellular signaling (i.e., bacterial communication) through secreted extracellular signaling molecules that coordinate biofilm formation and structure [42]. *P. aeruginosa* is known to use QS during CF lung infection, including QS auto-inducers PAI-1 and PAI-2, which are detected in CF sputum [43]. Bacteria in biofilms develop phenotypic distinctions compared with those bacteria associated with acute infections. For example, chronic organisms often become mucoid (alginate-overproducing), non-motile, non-flagellated, lipopolysaccharide-deficient, auxotrophic and/or antibiotic-resistant [44,45]. From among this multitude of alterations, the most common and clinically devastating is mutation of the *mucA* gene, encoding an anti-sigma factor that binds AlgT(U), a transcriptional regulator involved in production of alginate and the process of mucoid conversion. The mucoid phenotype is characterized by overproduction of highly viscous alginate expolysaccharide and represents an important step during establishment of chronic and fatal CF lung infections [46-49]. The switch or trigger for a mucoid phenotype has been associated with steep oxygen gradients within the thick airway CF mucus [50] (Figure 7).

During chronic infection, high bacterial mutation rates facilitate *P. aeruginosa* adaptation to an ever-

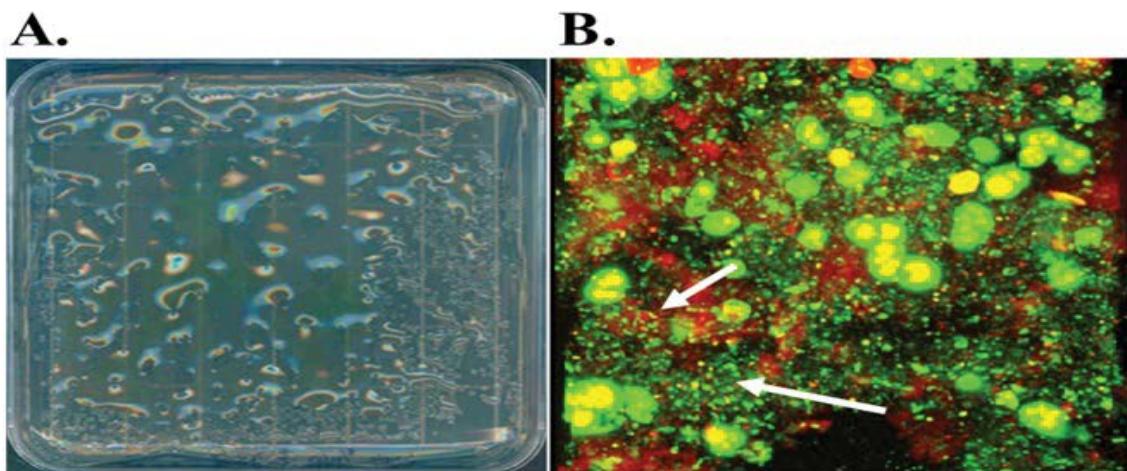
Figure 7: Phenotypes of two distinct *P. aeruginosa* CF isolates (383 and 2192) on L agar media. The strains were obtained 2 days apart from the same CF patient, and are otherwise isogenic [191]. The genome of strain 2192 has been sequenced [192], from [193].

changing environment. "Hypermutable" strains are more common in CF lungs that are chronically infected compared with those that are acutely infected [51]. Such strains exhibit changes in proofreading and DNA repair, allowing for rapid development of strain to strain differences (potentially including *mucA* loss of function [52]. Polymorphisms observed in one patient sample may be restricted to that individual, suggesting genetic and phenotypic evolution occurs longitudinally after initial lung infection [51]. These individualized lung microbiomes can be attributed to the compartmentalized nature of the pulmonary anatomy and varying evolutionary pressures, such as differing concentrations of antibiotics that select for the more resistant organisms [53,54].

B. cepacia represents another clinically important pathogen in CF lung disease. This organism, formerly termed *Pseudomonas cepacia*, has been recategorized as *B. cepacia* complex (BCC), a group of at least 20 genetically distinct, but phenotypically similar bacteria [55-57]. Members of BCC are gram-negative, catalase positive, obligate aerobic bacilli that can persist in the presence of certain disinfectants and readily survive with minimal nutrition. Infection with BCC, first recognized in the CF patient population in the late 1970s, has been associated with severe worsening of CF pulmonary reserve and poor clinical prognosis [58-60]. Similar to *P. aeruginosa*, BCC has the ability to form biofilms *in vivo*, potentially impacting antibiotic resistance [61,62]. Although formation of BCC biofilms may help establish initial infection, in contrast to *P. aeruginosa*, there is an inverse relationship between exopolysaccharide production and decline of CF pulmonary reserve. This difference may be due in part to an increased surface expression of virulence factors by nonmucoid BCC strains [63]. The switch to mucoid in BCC has been attributed to a more metabolically dormant and less aggressive phenotype. Overall, however, BCC infection confers a poor prognosis [64-67], and BCC has been suggested to outcompete *P. aeruginosa* in CF lungs. This advantage may be due to a primary siderophore, ornibactin, that is far more effective at obtaining iron from the host than the two primary *P. aeruginosa* siderophores, pyoverdine and pyochelin [68].

Other pathogens, including *H. influenzae* and *S. maltophilia*, are also frequent CF lung colonizers, with prevalence rates of 15.5 and 13.6%, respectively. *H. influenzae*, a gram-negative coccobacillus, is sometimes the earliest infectious organism recovered from very young CF patients, and causes chronic inflammation similar to *P. aeruginosa* [69,70]. It has been suggested that infection by *H. influenzae* (and consequent inflammation) early in life might increase susceptibility to infection by *P. aeruginosa* [71]. The prevalence of *S. maltophilia*, a gram-negative bacillus, appears to have increased due to use of anti-pseudomonal drugs [72]. These bacteria are emblematic of a pathogenically significant microbiome that includes many organisms of unknown pathogenic significance. As certain niches are emptied over the course of a CF patient's lifetime, new bacteria adapt to inhabit these microenvironments.

Bacterial/Viral infections in COPD


Similar to CF, the lungs of individuals with COPD are chronically infected yet with many similarities and differences. Although *S. pneumoniae*, *Haemophilus influenzae* and *Moraxella catarrhalis* are the predominant pathogens, others that have been identified include *Mycoplasma pneumoniae*, *P. aeruginosa*, *Citrobacter freundii*, *S. aureus*, *Enterobacter cloacae*, *Stenotrophomonas maltophilia*, *Klebsiella pneumoniae*, *Proteus mirabilis*, and *Serratia marcescens* [73]. Viruses identified include

parainfluenza virus, influenza virus, RSV, and rhinovirus.

Predominant COPD pathogens.

M. catarrhalis and *S. pneumoniae* are two of the most frequent species commonly cultured from the lungs of individuals with COPD, although their prevalence is less than in CF. A gallery of similar pathogens is found in COPD compared with CF, although the dominant organisms are different. Non-typable *H. influenzae* (NTHi) is the most common infectious bacterium observed in COPD and colonizes 60% of COPD patients [23,74-79]. During acute exacerbations, NTHi is the most likely bacterium to be found in the airway [74-78]. Since NTHi is cultured from individuals with stable COPD as well as during exacerbations, it has been suggested that these bacteria stimulate an inflammatory response in both clinical scenarios, and exacerbations tend to be more severe when NTHi is present. In addition, acquisition of new strains of NTHi increase the risk of frequent exacerbations [80-82]. NTHi has the ability to avoid clearance from the lungs contributing to its status as a refractory pathogen. The organism uses outer membrane proteins P2 and P5 to facilitate bacterial binding to respiratory mucus by lipooligosaccharide (LOS), a low molecular weight version of the more typical bacterial LPS. This pathogenic mechanism causes ciliary dysfunction, diminishing mucus clearance [83,84]. To further defend itself during infection, NTHi also secretes IgA proteases that bind and degrade IgA (the major antibody in mucosal secretions), reducing levels of IgA in the airway lumen, and, thereby, decreasing the ability to clear the organism. This adaptation not only allows NTHi to flourish, but also promotes growth and airway colonization of other pathogens, leading to complex infections that are difficult to eradicate. The same interactions have been reported after NTHi infection in CF lungs [85,86].

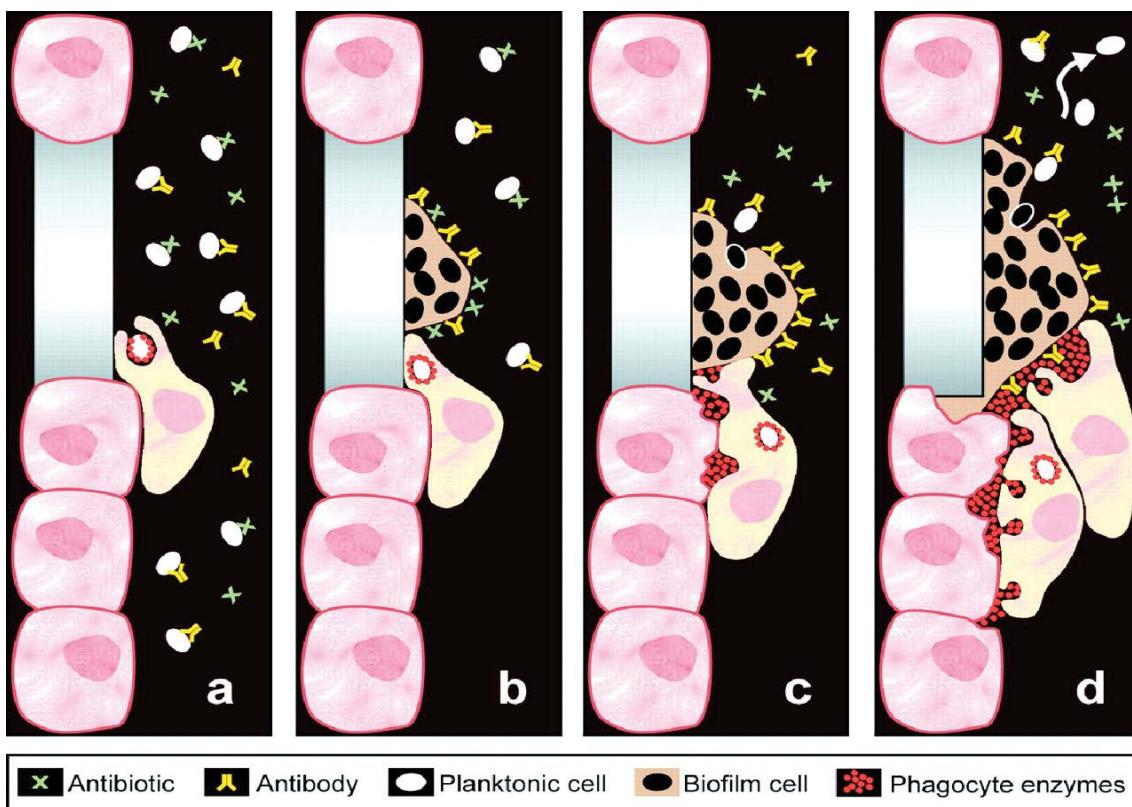
It is interesting to note that *M. catarrhalis*, a gram-negative diplococcus and commensal organism in the upper respiratory tract of humans was not initially deemed a pathogen in COPD. This bacterium was isolated frequently from the sputum of COPD patients, but its pathogenic capacity was not recognized until the early 1990's [87-89]. Since then, the organism has been established as a major cause of lung infections in COPD and a leading cause of exacerbations [90-93]. By adhering to epithelial cell surfaces, *M. catarrhalis* is able to persist in the lungs and elicit chronic infection. This propensity is stimulated by host immune defensins [94]. With a robust immune response, *M. catarrhalis* is stimulated to adhere to the cell surface, mediated by UspA, which binds to carcinoembryonic antigen-related cell adhesion molecules at the epithelial cell plasma membrane [95]. This interaction further promotes an airway inflammatory response. Along with the ability to adhere, ~90 percent of *M. catarrhalis* strains found in the lower respiratory tract resist complement-

Figure 8: A. L-agar plate of mucoid *P. aeruginosa* derived from a chronically infected COPD patient. B. Confocal laser scanning micrograph of sputum from the same patient with live (green)/dead (red) staining.

mediated killing by the immune system by virtue of a disulfide bond formation system that helps stabilize the lipopolysaccharide resisting complement attack [96,97]. Despite this survival mechanism, the organism remains susceptible to most antibiotics used to treat respiratory tract infection. An exception is resistance to trimethoprim and β -lactams, which occurs through naturally insensitive dihydrofolate reductase enzymes and the production of a β -lactamase [98-101].

Another common pathogen in COPD lungs is the gram-positive coccus, *S. pneumoniae*, typically found in the respiratory tract during both periods of both stability and exacerbation. As many COPD exacerbations are associated with bacterial lung infections, patients with sputum cultures revealing *S. pneumoniae* are not infrequently placed empirically on antibiotics stimulating a higher prevalence of antibiotic resistance among pneumococcal species [102]. *S. pneumoniae* is known to cause both exacerbations and an increased risk for pneumonia in patients with COPD [103,104]. Acute exacerbation is elicited by bacterial virulence factors and the immune response to new infection. An important virulence factor in this setting is the polysaccharide capsule that mediates evasion from immune clearance. Capsular features may be helpful in identifying pathogenic potential of various pneumococcal species [105].

The presence of *S. pneumoniae* confers a higher risk of exacerbation in COPD, but interestingly only when cultured in the absence of other pathogens. In mixed culture, the risk of exacerbation does not appear to be elevated, which suggests that singular culture represents a more virulent species [106]. Pneumococcal vaccines help reduce invasive infections caused by the many prevalent *S. pneumoniae* serotypes by inducing an adaptive immune response [107,108].


Although *P. aeruginosa* causes chronic respiratory infection in COPD, it occurs much less frequently than in CF. Still the organism is associated with considerable levels

of respiratory impairment [109-112] and is isolated in 6% of acute COPD exacerbations. An increased prevalence of multi-drug resistant strains is observed in critically-ill patients [110,111,113]. Exacerbations can be most readily attributed to *P. aeruginosa* during acquisition of a new strain which elicits an exuberant immune response [114]. The immune system responds by stimulating additional virulence factors from the *P. aeruginosa* as well as further inflammation. Moreover, the presence of the mucoid phenotype may be observed in this setting, and, just as in CF, these mucoid strains persist in the lungs as biofilms (Figure 8), while non-mucoid strains may not. The mucoid *P. aeruginosa* phenotype less common in COPD compared with CF, and the estimated prevalence's are 8% and 48%, respectively [115].

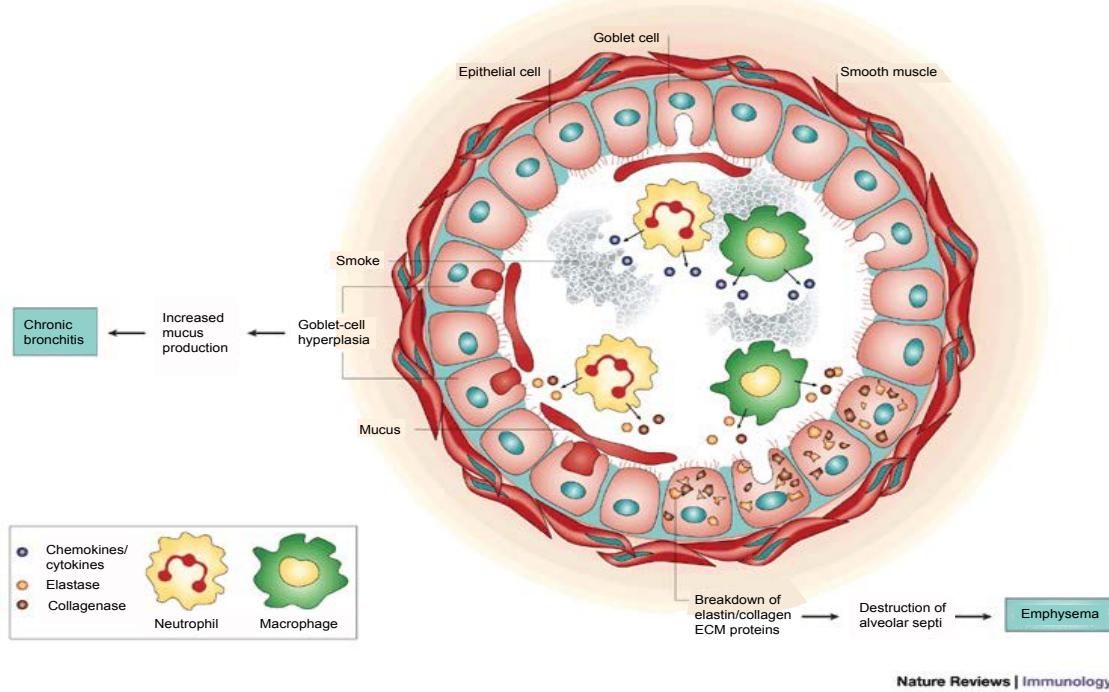
Innate Immune System

Innate immune dysfunction in CF

The biochemical and cellular derangements of CF produce innate immune system dysfunction. A normal component of innate lung defense is mechanical clearance of airway secretions by cilia on the epithelial cell surface [116-118]. Viscous mucus has several major consequences in the airway. First, as noted above, mucus compresses cilia against the cellular surface, and inhibits proper ciliary activity. Second, due to an already decreased clearance capacity, mucus directly interacts with the epithelial cell membrane. Over time, concentrated mucins directly anneal to the epithelial layer, and cannot be cleared by the cilia or by natural mechanical disruption (e.g. coughing or chest physical therapy) [119]. These factors contribute to the characteristic mucus stasis and inflammation in the CF lungs. A build-up of impacted mucus often begins at birth and continues throughout life in individuals with CF [120,121]. If it is not cleared, mucus forms an ideal niche that permits colonization by opportunistic microorganisms. Mucus plaque formation provides a surface on which bacteria adhere and form biofilms, which further increases

Figure 9: Biofilms promote bacterial persistence during treatment. Planktonic bacteria can be cleared by antibiotics, antibodies, or host human cells. Once a biofilm has formed, these elements may become less effective. Enzymes utilized as part of phagocytosis build up within host cells and elicit cell damage and increased inflammation. If bacteria return to planktonic form, the immune system and antibiotics are able to more effectively address infection. Permissions from Copyright Clearance Center - Rightslink, order number: 4336070663094.

plaque surface exopolysaccharide content, establishing a cyclical process of bacterial adherence, biofilm formation, and mucus plaque accumulation (Figure 9).


A second underlying problem with immune responsiveness in CF patients is the abnormal degradation and cell trafficking of Toll-like Receptor 4 (TLR4). Normally, TLR4 receptor is present within the Golgi [122,123] and may migrate to the cell surface and bind LPS as part of a receptor complex that assembles on lipid rafts and activates NF-KB and MAPK pathways [124,125]. Subsequently, the receptor is ubiquitinated and becomes associated with endosomes, where it activates IFN β 3 [122,126,127]. These events contribute to the degradation of TLR4, and even subtle changes in this mechanism can perturb the immune response [122,128-130]. Abnormal trafficking of TLR4 leads to increased LPS-induced activation involving multiple components of immune activity, including NF-KB, MAPK signaling, and IFN regulatory factor-3 (IFN β 3) [131]. Along with increased immunological responsiveness, these events may decrease TLR4 degradation, which further disrupts airway defense. Macrophages from CF patients may be hyper-responsive to bacterial LPS [132], due, in part, to abnormal TLR4 trafficking [132].

CF also dramatically affects function and accumulation of phagocytes in lung tissues [133]. Neutrophils, which accumulate to nearly 1500-fold above their normal levels, have impaired migration through the mucus in an attempt to clear bacteria before refractory

biofilms are established, which may allow changes in the bacterial phenotype, including mucoid conversion of *P. aeruginosa* [133-135]. Ineffective attempts at bacterial killing by neutrophils increase DNA deposition associated with neutrophil extracellular traps (NETs), which further contribute to mucus viscosity. Not only is the ability of neutrophils to phagocytose bacteria compromised, but steep oxygen gradients established by pathogens in airway secretions significantly impact generation of microbicidal reactive oxygen species (ROS) [135]. Without ROS (or reactive nitrogen species), neutrophil function is substantially compromised.

Innate immune dysfunction in COPD

Unlike CF airway, disease cigarette smoking is the major etiologic factor contributing to the development of COPD and this exposure elicits multiple innate immune system derangements (Figure 10). Cigarette smoke (CS) directly impairs mucociliary clearance [136], including both ciliary shortening and physiologic function [137-139]. Direct cell death from CS exposure also leads to re-epithelialization that is dominated by goblet cells, a cellular compartment associated with mucus production [140,141]. Shortened cilia after CS exposure are associated with histone deacetylase 6-mediated selective auto phagocytosis and further degradation of cilia [136]. Chronic reduction in mucociliary clearance promotes susceptibility to bacterial infection in patients with COPD, just as in CF.

Figure 10: Smoking and the Immune System. With permission from [194]. Permissions from Copyright Clearance Center - Rightslink, order number: 4336070475915.

CS also affects resident immune cells of the lung. These effects include increased numbers of alveolar macrophages and reduced ability to clear apoptotic cells and bacterial infections, due to impaired monocyte differentiation and lowered expression of surface recognition molecules [142,143]. CS also increases expression of pro-inflammatory chemokines and matrix metalloproteases, which suggest a change in macrophage chemokine phenotype [144,145]. Neutrophil ROS production regulates the phagocytic respiratory burst, and phagocytosis impairment during differentiation is another factor contributing to reduced bacterial clearance in COPD [146]. Failure of neutrophil function is compounded by reduced antimicrobial capacity of macrophage apoptosis. The polymorphonuclear cell derangements in COPD may also increase extravasation of lysozymes and granules into the extracellular space, contributing to pulmonary structural damage [147].

Activity of natural killer (NK) cells, which normally contribute to eradication of viral pathogens, is increased by CS. Elevated expression of epithelial cell surface ligands is associated with CS exposure and stimulates the NK cell by binding to the NKG2D receptor. These activated NK cells may promote airway epithelial cell apoptosis and tissue damage due to dysregulated inflammation [148].

Novel Treatment Strategies

Treatment of CF and removal of biofilms

Key aspects of CF treatment have traditionally focused on addressing symptoms of the disease, but more recently have included interventions directed towards correcting

fundamental physiologic abnormalities caused by mutation of CFTR. Symptomatic or palliative treatments, for example, include compensation for pancreatic insufficiency with supplemental pancreatic enzymes, high calorie diets with inclusion of fat-soluble vitamins, and anti-inflammatory agents to slow progression of respiratory function decline. General interventions for lung disease also encompass chest physical therapy and inhaled treatments to improve mucus clearance, together with antibiotic therapy for infection control [149].

Failure of mucus clearance is a hallmark of CF pathogenesis, and a number of treatments have been developed to overcome this defect. Mechanical devices and patient compliant actions (chest physical therapy, aerobic exercise, etc.) increase mucus mobilization, and are part of standard CF clinical care. Treatments include use of active cycle breathing techniques and autogenic drainage, a breathing technique used to mobilize mucus up the airway, where it can be more easily cleared by coughing. Positive expiratory pressure masks and high frequency chest wall oscillation can aid in this process [150,151]. Prescription of these methods is typically provided on an individualized basis, as there is no evidence that one technique works more effectively in all cases [152]. Furthermore, it is not established that use of airway clearing techniques is beneficial in the early stages of CF, when there may be little sign of lung impairment, and build-up of mucus is less pronounced. That being said, recent treatment guidelines often recommend daily airway clearance and aerobic exercise to help improve mucus clearance as a means to improve patient health [153].

Mucolytic compounds are used to breakdown excess mucus lining the airways. In addition to airway secretions, themselves, DNA from neutrophil extracellular traps contributes significantly to increased CF sputum viscosity. Use of recombinant human DNase, such as dornase alfa, can be used to decrease viscosity and augment lung function [154,155]. Another useful mechanism is increased hydration of airway secretions. Inhaled agents such as hypertonic saline (7%) stimulate movement of vascular water into thick airway secretions, helping cilia mobilize sputum and promote cough-mediated clearance [156-158].

Newer modes of treatment aim to target basic genetic defects responsible for CF [159]. One such technique is to bypass or repair DNA and/or mRNA encoding mutant CFTR protein. Approaches using viral vectors - e.g. adeno-, adeno-associated, or retro-viruses - were used to insert functioning copies of the CFTR gene into airway epithelia. While early attempts towards CFTR replacement led to inadequate gene transmission and immune responses upon repeated administration [160], technology in this area has continued to advance. Repeated nebulization of plasmid DNA and liposome complex [161] in a double-blind study showed modest stabilization of lung function when the test group was compared to the control after one year. Adverse events were noted in both study cohorts, with more serious effects observed after plasmid treatment. Gene transfer approaches such as these, as well as newer viral delivery vehicles, represent important areas for future investigation.

More successful methods that aim to treat the underlying genetic cause of cystic fibrosis act on the mutant protein directly. One example is the combination of lumacaftor and ivacaftor, two molecules that target the classic D508 variant [159]. Lumacaftor is an agent known as a 'corrector'; it has been shown to partially 'correct' misprocessing of the F508del mutant, increasing its presence at the cell surface [162]. This alone does not lead to significant effects on disease severity, but in combination with ivacaftor, an FDA approved 'potentiator' (activator of ion channel gating), significant clinical benefit has been demonstrated among F508del/F508del homozygous individuals. Ivacaftor acts to increase the probability that the CFTR channel is open, allowing for chloride and bicarbonate movement and proper function [163]. The drug combination (ivacaftor together with lumacaftor) led to improvement of FEV₁ in patients homozygous for the F508del mutation, representing a significant breakthrough (applicable to ~40% of individuals with CF [164]. Ivacaftor as a single drug has also shown robust benefit among numerous partial function CFTR mutations, for which the compound is FDA approved.

Strategic antibiotic regimens are commonly used to control infection of CF airways, although resistance

has become an increasing issue. A large subset of these target *P. aeruginosa*. Nebulized antibiotics including tobramycin, colistin and others are routinely administered and reach high concentrations in lower trachea and upper airways; penetration to the most distal airways may be insufficient [165-169]. In comparison, when antibiotics are given intravenously or orally, drugs are delivered to the deep respiratory tract via the pulmonary circulation, but may be inadequately transferred to sputum, due partly to CFTR-mediated secretory and mucus viscosity issues [170]. The combination of both routes is essential since *P. aeruginosa* is established throughout the lung. [29,171,172]. Development of resistance is common; *P. aeruginosa* (and other bacteria such as BCC) adapt through formation of biofilms, compounding issues related to chronic infection [173].

Dispersal of thick bacterial biofilms is an important step towards treating CF lung infection, since antibiotics are far more efficacious (by 10-100-fold) against planktonic (free-living) *P. aeruginosa*. Biofilms that arise after the Δ mucA mutation are inherently resistant to antibiotics and phagocytic neutrophils [174,175]. One experimental treatment that has been tested *in vitro* and *in vivo* (mouse chronic infection model) uses acidified nitrite (NO₂⁻) administration at pH 6.5 [176]. The acidic pH reflects that of CF lungs, and bacterial killing is pH dependent. Formation of HNO₂ and NO through this approach may enhance NO associated with anaerobic respiration of the organism in adherent CF mucus. Antibiotic resistant strains were found to be highly sensitive to HNO₂, indicating importance of further studies in this area.

A vitally important treatment for CF involves lung transplantation. Infants and toddlers with CF comprise a minority of healthy lung recipients [177]. Liou, et al. used retrospective data to show that pediatric patients may benefit less from the intervention [178], whereas other studies have disputed these findings [179].

Therapeutics for COPD

Since nearly all the lung damage that occurs in COPD cannot be reversed once it occurs, the primary goal is disease prevention. Treatment strives to minimize respiratory symptoms and complications, maintain lung function, and preserve quality of life. Management can be achieved through pharmacological or non-pharmacological means.

Multiple drug classes are utilized as interventions for COPD. Short acting beta agonists (SABA) represent the initial and most frequently used medications applied for wheezing or breathlessness. These drugs bind to the β -adrenergic receptor, stimulating smooth muscle cell relaxation and airway dilation. Long acting anticholinergics comprise a mainstay of chronic maintenance treatment for COPD, and mitigate many

COPD symptoms, including airflow limitation and dynamic hyperinflation, acute COPD exacerbations, and lung function deterioration [180-182]. Long acting beta agonists may be used alone or in combination with long acting anticholinergics. A third class of medication is inhaled corticosteroids (ICS). ICS are recommended when FEV₁ is lower than 50% among patients who have had two or more exacerbations in the prior year. ICS may be administered in combination with long acting beta agonists and long acting anticholinergics. This triad of drugs may improve lung function but does not reduce exacerbations when compared to other modalities [183]. Approximately 70% of COPD patients receive ICS, but only 10% may actually qualify according to current guidelines [184]. Phosphodiesterase (PDE) inhibitors block breakdown of signaling molecules (such as cAMP and cGMP). This process reduces inflammation and stimulates bronchodilation. Roflumilast reduces the number of exacerbations in patients with severe COPD-associated bronchitis and recurring exacerbations [185].

As with CF, pharmacological treatments utilized in COPD also include mucolytics and antibiotics. Mucolytics cleave respiratory secretions and have been reported to improve overall quality of life [186]. Cleaved mucus is more readily mobilized from lungs with damaged cilia. Improved clearance reduces ability of bacteria to bind to the airway epithelial surface and promotes neutrophil activity, which helps quell the exuberant immune response in COPD. Despite its beneficial effects in CF, rhDNase is detrimental in individuals with COPD and reduces lung function and increases exacerbations [187]. Other mucoactive agents such as normal mannitol, saline, and hypertonic saline may cause transient bronchospasm, cough, and dyspnea upon initiation but may have slight beneficial clinical and physiologic effects [187]. Because exacerbations are frequently triggered by bacterial infection, antibiotics are often used in a manner similar to that described for CF. Chronic macrolide use reduces the likelihood of COPD exacerbation, an effect believed to be mediated by macrolide anti-inflammatory properties, rather than its antibacterial effects. Importantly, prolonged use of either erythromycin or azithromycin may lead to the selection of resistant organisms [188].

A critical, non-pharmacological treatment modality for COPD involves smoking cessation. Nicotine replacement is commonly used; other smoking cessation medications include bupropion and partial nicotinic receptor agonists such as varenicline. Promising reductions in smoking have been achieved with varenicline. Finally, treatments that prolong life in individuals with COPD include supplemental oxygen in the setting of resting hypoxemia, vaccinations, pulmonary rehabilitation, and lung volume reduction procedures [189].

Closing Remarks

Chronic respiratory diseases including COPD and CF are the third leading cause of death in the United States

currently. Both disorders provoke similar respiratory symptoms and can lead to respiratory insufficiency and death. Common morbidities include bacterial infections caused by similar bacteria; common pathophysiologic processes include mucostasis and abnormalities of the innate immune system. Further research is needed to achieve the goal of managing these disorders and ultimately prolonging lives of both patient populations.

Funding

This work was funded in part from the Department of Veteran's Affairs, Cincinnati VA Medical Center Merit Award, #5I01BX000845-03 (D.J.H.), National Institutes of Health (R01HL136414, R01HL139876 [E.J.S.], R01HL116226 [J.P.C.], Cystic Fibrosis Foundation (CFF SORSCH13XX0, CFF SORSCH14XX0) [E.J.S.].

References

1. O'Sullivan BP, Freedman SD (2009) Cystic fibrosis. *Lancet* 373: 1891-1904.
2. Voter KZ, Ren CL (2008) Diagnosis of cystic fibrosis. *Clin Rev Allergy Immunol* 35: 100-106.
3. Reisin IL, Prat AG, Abraham EH, Amara JF, Gregory RJ, et al. (1994) The cystic fibrosis transmembrane conductance regulator is a dual ATP and chloride channel. *J Biol Chem* 269: 20584-20591.
4. Frizzell RA, Rechcemmer G, Shoemaker RL (1986) Altered regulation of airway epithelial cell chloride channels in cystic fibrosis. *Science* 233: 558-560.
5. May JR, Herrick NC, Thompson D (1972) Bacterial infection in cystic fibrosis. *Arch Dis Child* 47: 908-913.
6. Rajan S, Saiman L (2002) Pulmonary infections in patients with cystic fibrosis. *Semin Respir Infect* 17: 47-56.
7. Rommens JM, Iannuzzi MC, Kerem B (1989) Identification of the cystic fibrosis gene: Chromosomal walking and jumping. *Science* 245: 1059-1065.
8. Broadbent SD, Ramjeesingh M, Bear CE, Argent BE, Linsdell P, et al. (2015) The cystic fibrosis transmembrane conductance regulator is an extracellular chloride sensor. *Pflugers Arch* 467: 1783-1794.
9. Lukacs GL, Chang XB, Bear C, Kartner N, Mohamed A, et al (1993) The delta F508 mutation decreases the stability of cystic fibrosis transmembrane conductance regulator in the plasma membrane. Determination of functional half-lives on transfected cells. *J Biol Chem* 268: 21592-21598.
10. Hoegger MJ, Fischer AJ, McMenimen JD, Ostegard LS, Tucker AJ, et al. (2014) Impaired mucus detachment disrupts mucociliary transport in a piglet model of cystic fibrosis. *Science* 345: 818-822.
11. Hansel TT, Barnes PJ (2004) An atlas of chronic obstructive pulmonary disease. Informa Health Care, London.
12. Ward BW, Nugent CN, Blumberg SJ, Vahrtian A (2017) Measuring the prevalence of diagnosed chronic obstructive pulmonary disease in the United States using data from the 2012-2014 national health interview survey. *Public Health Rep* 132: 149-156.
13. <http://goldcopd.org/gold-2017-global-strategy-diagnosis-management-prevention-copd/>
14. Agusti A, Soriano JB (2008) COPD as a systemic disease. *COPD* 5: 133-138.

15. Coxson HO, Leipsic J, Parraga G, Sin DD (2014) Using pulmonary imaging to move chronic obstructive pulmonary disease beyond FEV1. *Am J Respir Crit Care Med* 190: 135-144.

16. Blasi F, Chalmers JD, Aliberti S (2014) COPD and bronchiectasis: Phenotype, endotype or co-morbidity? *COPD* 11: 603-604.

17. MacNee W, Calverley PM (2003) Chronic obstructive pulmonary disease . 7: Management of COPD. *Thorax* 58: 261-265.

18. Aryal S, Diaz-Guzman E, Mannino DM (2013) COPD and gender differences: An update. *Transl Res* 162: 208-218.

19. Salvi SS, Barnes PJ (2009) Chronic obstructive pulmonary disease in non-smokers. *Lancet* 374: 733-743.

20. Eisner MD (2010) Secondhand smoke at work. *Curr Opin Allergy Clin Immunol* 10: 121-126.

21. Diaz-Guzman E, Aryal S, Mannino DM (2012) Occupational chronic obstructive pulmonary disease: An update. *Clin Chest Med* 33: 625-636.

22. Celli BR, MacNee W, Ats Ers Task Force (2004) Standards for the diagnosis and treatment of patients with COPD: a summary of the ATS/ERS position paper. *Eur Respir J* 23: 932-946.

23. Sethi S, Murphy TF (2001) Bacterial infection in chronic obstructive pulmonary disease in 2000: A state-of-the-art review. *Clin Microbiol Rev* 14: 336-363.

24. Decramer M, De Benedetto F, Del Ponte S, Marinari S (2005) Systemic effects of COPD. *Respir Med* 99: S3-S10.

25. Vestbo J, Anderson JA, Calverley PM, Celli B, Ferguson GT, et al. (2009) Adherence to inhaled therapy, mortality and hospital admission in COPD. *Thorax* 64: 939-943.

26. Burge S, Wedzicha JA (2003) COPD exacerbations: Definitions and classifications. *Eur Respir J Suppl* 41: 46s-53s.

27. Frederiksen B, Koch C, Hoiby N (1997) Antibiotic treatment of initial colonization with *Pseudomonas aeruginosa* postpones chronic infection and prevents deterioration of pulmonary function in cystic fibrosis. *Pediatr Pulmonol* 23: 330-335.

28. Coutinho HD, Falcao-Silva VS, Goncalves GF (2008) Pulmonary bacterial pathogens in cystic fibrosis patients and antibiotic therapy: a tool for the health workers. *Int Arch Med* 1: 24.

29. Valerius NH, Koch C, Hoiby N (1991) Prevention of chronic *Pseudomonas aeruginosa* colonisation in cystic fibrosis by early treatment. *Lancet* 338: 725-726.

30. FitzSimmons SC (1993) The changing epidemiology of cystic fibrosis. *J Pediatr* 122: 1-9.

31. Ciofu O, Hansen CR, Hoiby N (2013) Respiratory bacterial infections in cystic fibrosis. *Curr Opin Pulm Med* 19: 251-258.

32. Rayner C, Munckhof WJ (2005) Antibiotics currently used in the treatment of infections caused by *Staphylococcus aureus*. *Intern Med J* 35: S3-S16.

33. Goering RV, Bauernfeind A, Lenz W, Przyklenk B (1990) *Staphylococcus aureus* in patients with cystic fibrosis: An epidemiological analysis using a combination of traditional and molecular methods. *Infection* 18: 57-60.

34. Proctor RA, Balwit JM, Vesga O (1994) Variant subpopulations of *Staphylococcus aureus* as cause of persistent and recurrent infections. *Infect Agents Dis* 3: 302-312.

35. Proctor RA, van Langevelde P, Kristjansson M, Maslow JN, Arbeit RD (1995) Persistent and relapsing infections associated with small-colony variants of *Staphylococcus aureus*. *Clin Infect Dis* 20: 95-102.

36. Balwit JM, van Langevelde P, Vann JM, Proctor RA (1994) Gentamicin-resistant menadione and hemin auxotrophic *Staphylococcus aureus* persist within cultured endothelial cells. *J Infect Dis* 170: 1033-1037.

37. von Eiff C, Bettin D, Proctor RA, Rolauffs B, Lindner N, et al. (1997) Recovery of small colony variants of *Staphylococcus aureus* following gentamicin bead placement for osteomyelitis. *Clin Infect Dis* 25: 1250-1251.

38. Gilligan PH, Gage PA, Welch DF, Muszynski MJ, Wait KR (1987) Prevalence of thymidine-dependent *Staphylococcus aureus* in patients with cystic fibrosis. *J Clin Microbiol* 25: 1258-1261.

39. Mates SM, Eisenberg ES, Mandel LJ, Patel L, Kaback HR, et al. (1982) Membrane potential and gentamicin uptake in *Staphylococcus aureus*. *Proc Natl Acad Sci U S A* 79: 6693-6697.

40. Costerton JW (1999) Introduction to biofilm. *Int J Antimicrob Agents* 11: 217-221.

41. Hoiby N (1993) Antibiotic therapy for chronic infection of *Pseudomonas* in the lung. *Annu Rev Med* 44: 1-10.

42. Davies DG, Parsek MR, Pearson JP, Iglesias BH, Costerton JW, et al. (1998) The involvement of cell-to-cell signals in the development of a bacterial biofilm. *Science* 280: 295-298.

43. Singh PK, Schaefer AL, Parsek MR, Moninger TO, Welsh MJ, et al. (2000) Quorum-sensing signals indicate that cystic fibrosis lungs are infected with bacterial biofilms. *Nature* 407: 762-764.

44. Mahenthiralingam E, Campbell ME, Speert DP (1994) Nonmotility and phagocytic resistance of *Pseudomonas aeruginosa* isolates from chronically colonized patients with cystic fibrosis. *Infect Immun* 62: 596-605.

45. Govan JRW, Deretic V (1996) Microbial pathogenesis in cystic fibrosis: Mucoid *Pseudomonas aeruginosa* and *Burkholderia cepacia*." *Microbiol Rev* 60: 539-574.

46. Martin DW, Schurr MJ, Mudd MH, Govan JR, Holloway BW, et al. (1993) Mechanism of conversion to mucoidy in *Pseudomonas aeruginosa* infecting cystic fibrosis patients. *Proc Natl Acad Sci U S A* 90: 8377-8381.

47. Hancock RE, Mutharia LM, Chan L, Darveau RP, Speert DP, et al. (1983) *Pseudomonas aeruginosa* isolates from patients with cystic fibrosis: a class of serum-sensitive, nontypable strains deficient in lipopolysaccharide O side chains. *Infect Immun* 42: 170-177.

48. Luzar MA, Thomassen MJ, Montie TC (1985) Flagella and motility alterations in *Pseudomonas aeruginosa* strains from patients with cystic fibrosis: Relationship to patient clinical condition. *Infect Immun* 50: 577-582.

49. Deretic V, Schurr MJ, Boucher JC, Martin DW (1994) Conversion of *Pseudomonas aeruginosa* to mucoidy in cystic fibrosis: Environmental stress and regulation of bacterial virulence by alternative sigma factors. *J Bacteriol* 176: 2773-2780.

50. Hassett DJ, Cuppoletti J, Trapnell B, Lymar SV, Rowe JJ, et al. (2002) Anaerobic metabolism and quorum sensing by *Pseudomonas aeruginosa* biofilms in chronically infected cystic fibrosis airways: Rethinking antibiotic treatment strategies and drug targets. *Adv Drug Deliv Rev* 54: 1425-1443.

51. Oliver A, Cantón R, Campo P, Baquero F, Blázquez J (2000) High frequency of hypermutable *Pseudomonas aeruginosa* in cystic fibrosis lung infection. *Science* 288: 1251-1254.
52. Smania AM, Segura I, Pezza RJ, Becerra C, Albesa I, et al. (2004) Emergence of phenotypic variants upon mismatch repair disruption in *Pseudomonas aeruginosa*. *Microbiology* 150: 1327-1338.
53. Baquero F (1997) Gram-positive resistance: Challenge for the development of new antibiotics. *J Antimicrob Chemother* 39: 1-6.
54. Kepler TB, Perelson AS (1998) Drug concentration heterogeneity facilitates the evolution of drug resistance. *Proc Natl Acad Sci U S A* 95: 11514-11519.
55. Mahenthiralingam E, Urban TA, Goldberg JB (2005) The multifarious, multireplicon *Burkholderia cepacia* complex. *Nat Rev Microbiol* 3: 144-156.
56. Saiman L, Siegel JD, LiPuma JJ, Brown RF, Bryson EA, et al. (2014) Infection prevention and control guideline for cystic fibrosis: 2013 update. *Infect Control Hosp Epidemiol* 35: S1-S67.
57. Vandamme P, Dawyndt P (2011) Classification and identification of the *Burkholderia cepacia* complex: Past, present and future. *Syst Appl Microbiol* 34: 87-95.
58. Corey M, Farewell V (1996) Determinants of mortality from cystic fibrosis in Canada, 1970-1989. *Am J Epidemiol* 143: 1007-1017.
59. Kalish LA, Waltz DA, Dovey M, Potter-Bynoe G, McAdam AJ, et al. (2006) Impact of *Burkholderia dolosa* on lung function and survival in cystic fibrosis. *Am J Respir Crit Care Med* 173: 421-425.
60. De Soya A, McDowell A, Archer L, Dark JH, Elborn SJ, et al. (2001) *Burkholderia cepacia* complex genomovars and pulmonary transplantation outcomes in patients with cystic fibrosis. *Lancet* 358: 1780-1781.
61. Caraher E, Reynolds G, Murphy P, McClean S, Callaghan M (2007) Comparison of antibiotic susceptibility of *Burkholderia cepacia* complex organisms when grown planktonically or as biofilm in vitro. *Eur J Clin Microbiol Infect Dis* 26: 213-216.
62. Mushtaq S, Warner M, Livermore DM (2010) In vitro activity of ceftazidime+NXL104 against *Pseudomonas aeruginosa* and other non-fermenters. *J Antimicrob Chemother* 65: 2376-2381.
63. Zlosnik JE, Costa PS, Brant R, Mori PY, Hird TJ, et al. (2011) Mucoid and nonmucoid *Burkholderia cepacia* complex bacteria in cystic fibrosis infections. *Am J Respir Crit Care Med* 183: 67-72.
64. Isles A, MacLusky I, Corey M, Gold R, Prober C, et al. (1984) *Pseudomonas cepacia* infection in cystic fibrosis: An emerging problem. *J Pediatr* 104: 206-210.
65. Tablan OC, Chorba TL, Schidlow DV, White JW, Hardy KA, et al. (1985) *Pseudomonas cepacia* colonization in patients with cystic fibrosis: Risk factors and clinical outcome. *J Pediatr* 107: 382-387.
66. Thomassen MJ, Klinger JD, Winnie GB, Wood RE, Burtner C, et al. (1984) Pulmonary cellular response to chronic irritation and chronic *Pseudomonas aeruginosa* pneumonia in cats. *Infect Immun* 45: 741-747.
67. Boxerbaum B, Klinger JD (1984) *Pseudomonas cepacia* bacteremia in cystic fibrosis. *Pediatric Research* 18: 269A.
68. Weaver VB, Kolter R (2004) *Burkholderia* spp. alter *Pseudomonas aeruginosa* physiology through iron sequestration. *J Bacteriol* 186: 2376-2384.
69. Anwar H, van Biesen T, Dasgupta M, Lam K, Costerton JW (1989) Interaction of biofilm bacteria with antibiotics in a novel in vitro chemostat system. *Antimicrob Agents Chemother* 33: 1824-1826.
70. Williams I, Venables WA, Lloyd D, Paul F, Critchley I (1997) The effects of adherence to silicone surfaces on antibiotic susceptibility in *Staphylococcus aureus*. *Microbiology* 143: 2407-2413.
71. Smith A (1997) Pathogenesis of bacterial bronchitis in cystic fibrosis. *Pediatr Infect Dis J* 16: 91-95.
72. Denton M, Todd NJ, Littlewood JM (1996) Role of anti-pseudomonal antibiotics in the emergence of *Stenotrophomonas maltophilia* in cystic fibrosis patients. *Eur J Clin Microbiol Infect Dis* 15: 402-405.
73. Shimizu K, Yoshii Y, Morozumi M, Chiba N, Ubukata K, et al. (2015) Pathogens in COPD exacerbations identified by comprehensive real-time PCR plus older methods. *Int J Chron Obstruct Pulmon Dis* 10: 2009-2016.
74. Bandi V, Apicella MA, Mason E, Murphy TF, Siddiqi A, et al. (2001) Nontypeable *Haemophilus influenzae* in the lower respiratory tract of patients with chronic bronchitis. *Am J Respir Crit Care Med* 164: 2114-2119.
75. Bandi V, Jakubowycz M, Kinyon C, Mason EO, Atmar RL, et al. (2003) Infectious exacerbations of chronic obstructive pulmonary disease associated with respiratory viruses and non-typeable *Haemophilus influenzae*. *FEMS Immunol Med Microbiol* 37: 69-75.
76. Groenewegen KH, Wouters EF (2003) Bacterial infections in patients requiring admission for an acute exacerbation of COPD; a 1-year prospective study. *Respir Med* 97: 770-777.
77. King PT, Hutchinson PE, Johnson PD, Holmes PW, Freezer NJ, et al. (2003) Adaptive immunity to nontypeable *Haemophilus influenzae*. *Am J Respir Crit Care Med* 167: 587-592.
78. Murphy TF, Brauer AL, Schiffmacher AT, Sethi S (2004) Persistent colonization by *Haemophilus influenzae* in chronic obstructive pulmonary disease. *Am J Respir Crit Care Med* 170: 266-272.
79. Ecker DJ, Sampath R, Blyn LB, Eshoo MW, Ivy C, et al. (2005) Rapid identification and strain-typing of respiratory pathogens for epidemic surveillance. *Proc Natl Acad Sci U S A* 102: 8012-8017.
80. Hill AT, Campbell EJ, Hill SL, Bayley DL, Stockley RA (2000) Association between airway bacterial load and markers of airway inflammation in patients with stable chronic bronchitis. *Am J Med* 109: 288-295.
81. Patel IS, Seemungal TA, Wilks M, Lloyd-Owen SJ, Donaldson GC, et al. (2002) Relationship between bacterial colonization and the frequency, character, and severity of COPD exacerbations. *Thorax* 57: 759-764.
82. Sethi S, Evans N, Grant BJ, Murphy TF (2002) New strains of bacteria and exacerbations of chronic obstructive pulmonary disease. *N Engl J Med* 347: 465-471.
83. Reddy MS, Murphy TF, Faden HS, Bernstein JM (1997) Middle ear mucin glycoprotein: Purification and interaction with nontypeable *Haemophilus influenzae* and *Moraxella catarrhalis*. *Otolaryngol Head Neck Surg* 116: 175-180.
84. Denny FW (1974) Effect of a toxin produced by *Haemophilus influenzae* on ciliated respiratory epithelium. *J Infect Dis* 129: 93-100.
85. Plaut AG (1983) The IgA1 proteases of pathogenic bacteria. *Annu Rev Microbiol* 37: 603-622.

86. Mulks M, Kornfeld SJ, Frangione B, Plaut AG (1982) Relationship between the specificity of IgA proteases and serotypes in *Haemophilus influenzae*. *J Infect Dis* 146: 266-274.

87. May JR (1953) The bacteriology of chronic bronchitis. *Lancet* 265: 534-537.

88. Howell TH (1951) Recent advances in the treatment of chronic bronchitis. *Med World* 73: 478-481.

89. Verduin CM, Hol C, Fleer A, van Dijk H, van Belkum A (2002) *Moraxella catarrhalis*: From emerging to established pathogen. *Clin Microbiol Rev* 15: 125-144.

90. Catlin BW (1990) *Branhamella catarrhalis*: An organism gaining respect as a pathogen. *Clin Microbiol Rev* 3: 293-320.

91. Hager H, Vergheese A, Alvarez S, Berk SL (1987) *Branhamella catarrhalis* respiratory infections. *Rev Infect Dis* 9: 1140-1149.

92. Murphy TF (1996) *Branhamella catarrhalis*: epidemiology, surface antigenic structure, and immune response. *Microbiol Rev* 60: 267-279.

93. Murphy TF, Sethi S (1992) Bacterial infection in chronic obstructive pulmonary disease. *Am Rev Respir Dis* 146: 1067-1083.

94. Gorter AD, Hiemstra PS, de Bentzmann S, van Wetering S, Dankert J, et al. (2000) Stimulation of bacterial adherence by neutrophil defensins varies among bacterial species but not among host cell types. *FEMS Immunol Med Microbiol* 28: 105-111.

95. Hill DJ, Virji M (2003) A novel cell-binding mechanism of *Moraxella catarrhalis* ubiquitous surface protein UspA: Specific targeting of the N-domain of carcinoembryonic antigen-related cell adhesion molecules by UspA1. *Mol Microbiol* 48: 117-129.

96. Hol C, Verduin CM, Van Dijke EE, Verhoef J, Fleer A, et al. (1995) Complement resistance is a virulence factor of *Branhamella* (*Moraxella*) catarrhalis. *FEMS Immunol Med Microbiol* 11: 207-211.

97. de Vries SP, Rademakers RJ, van der Gaast-de Jongh CE, Eleveld MJ, Hermans PW, et al. (2014) Deciphering the genetic basis of *Moraxella catarrhalis* complement resistance: A critical role for the disulphide bond formation system. *Mol Microbiol* 91: 522-537.

98. Berk SL, Kalbfleisch JH (1996) Antibiotic susceptibility patterns of community-acquired respiratory isolates of *Moraxella catarrhalis* in western Europe and in the USA. The alexander project collaborative group. *J Antimicrob Chemother* 38: 85-96.

99. Hoogkamp-Korstanje JA, Dirks-Go SI, Kabel P, Manson WL, Stobberingh EE, et al. (1997) Multicentre in-vitro evaluation of the susceptibility of *Streptococcus pneumoniae*, *Haemophilus influenzae* and *Moraxella catarrhalis* to ciprofloxacin, clarithromycin, co-amoxiclav and sparfloxacin. *J Antimicrob Chemother* 39: 411-414.

100. McGregor K, Chang BJ, Mee BJ, Riley TV (1998) *Moraxella catarrhalis*: Clinical significance, antimicrobial susceptibility and BRO beta-lactamases. *Eur J Clin Microbiol Infect Dis* 17: 219-234.

101. Huovinen P (1987) Trimethoprim resistance. *Antimicrob Agents Chemother* 31: 1451-1456.

102. Albrich WC, Monnet DL, Harbarth S (2004) Antibiotic selection pressure and resistance in *Streptococcus pneumoniae* and *Streptococcus pyogenes*. *Emerg Infect Dis* 10: 514-517.

103. Alanee SR, McGee L, Jackson D, Chiou CC, Feldman C, et al. (2007) Association of serotypes of *Streptococcus pneumoniae* with disease severity and outcome in adults: An international study. *Clin Infect Dis* 45: 46-51.

104. Garcia-Vidal C, Ardanuy C, Tubau F, Viasus D, Dorca J, et al. (2010) Pneumococcal pneumonia presenting with septic shock: Host- and pathogen-related factors and outcomes. *Thorax* 65: 77-81.

105. Calix JJ, Nahm MH (2010) A new pneumococcal serotype, 11E, has a variably inactivated wcjE gene. *J Infect Dis* 202: 29-38.

106. Jonsson S, Vidarsson G, Valdimarsson H, Schiffman G, Schneerson R, et al. (2002) Vaccination of COPD patients with a pneumococcus type 6B tetanus toxoid conjugate vaccine. *Eur Respir J* 20: 813-818.

107. Bogaert D, van der Valk P, Ramdin R, Sluijter M, Monninkhof E, et al. (2004) Host-pathogen interaction during pneumococcal infection in patients with chronic obstructive pulmonary disease. *Infect Immun* 72: 818-823.

108. Alfageme I, Vazquez R, Reyes N, Muñoz J, Fernández A, et al. (2006) Clinical efficacy of anti-pneumococcal vaccination in patients with COPD. *Thorax* 61: 189-195.

109. Hurst JR, Perera WR, Wilkinson TM, Donaldson GC, Wedzicha JA (2006) Systemic and upper and lower airway inflammation at exacerbation of chronic obstructive pulmonary disease. *Am J Respir Crit Care Med* 173: 71-78.

110. Miravitles M, Espinosa C, Fernández-Laso E, Martos JA, Maldonado JA, et al. (1999) Relationship between bacterial flora in sputum and functional impairment in patients with acute exacerbations of COPD. Study Group of Bacterial Infection in COPD. *Chest* 116: 40-46.

111. Wilkinson TM, Patel IS, Wilks M, Donaldson GC, Wedzicha JA (2003) Airway bacterial load and FEV1 decline in patients with chronic obstructive pulmonary disease. *Am J Respir Crit Care Med* 167: 1090-1095.

112. Lode H, Allewelt M, Balk S, De Roux A, Mauch H, et al. (2007) A prediction model for bacterial etiology in acute exacerbations of COPD. *Infection* 35: 143-149.

113. Friedland I, Gallagher G, King T, Woods GL (2004) Antimicrobial susceptibility patterns in *Pseudomonas aeruginosa*: Data from a multicenter Intensive Care Unit Surveillance Study (ISS) in the United States. *J Chemother* 16: 437-441.

114. Murphy TF, Brauer AL, Eschberger K, Lobbins P, Grove L, et al. (2008) *Pseudomonas aeruginosa* in chronic obstructive pulmonary disease. *Am J Respir Crit Care Med* 177: 853-860.

115. Crull MR, Ramos KJ, Caldwell E, Mayer-Hamblett N, Aitken ML, et al. (2016) Change in *Pseudomonas aeruginosa* prevalence in cystic fibrosis adults over time. *BMC Pulm Med* 16: 176.

116. Wanner A, Salathé M, O'Riordan TG (1996) Mucociliary clearance in the airways. *Am J Respir Crit Care Med* 154: 1868-1902.

117. Boucher RC (1994) The genetics of cystic fibrosis: A paradigm for uncovering new drug targets. *Curr Opin Biotechnol* 5: 639-642.

118. Boucher RC (1994) Human airway ion transport. Part two. *Am J Respir Crit Care Med* 150: 581-593.

119. Boucher RC (2001) Pathogenesis of cystic fibrosis airways disease. *Trans Am Clin Climatol Assoc* 112: 99-107.

120. Zuelzer WW, Newton WA Jr (1949) The pathogenesis of

fibrocystic disease of the pancreas; a study of 36 cases with special reference to the pulmonary lesions. *Pediatrics* 4: 53-69.

121. Oppenheimer EH, Esterly JR (1975) Pathology of cystic fibrosis review of the literature and comparison with 146 autopsied cases. *Perspect Pediatr Pathol* 2: 241-278.

122. Husebye H, Halaas Ø, Stenmark H, Tunheim G, Sandanger Ø, et al. (2006) Endocytic pathways regulate Toll-like receptor 4 signaling and link innate and adaptive immunity. *EMBO J* 25: 683-692.

123. Latz E, Visintin A, Lien E, Fitzgerald KA, Monks BG, et al. (2002) Lipopolysaccharide rapidly traffics to and from the Golgi apparatus with the toll-like receptor 4-MD-2-CD14 complex in a process that is distinct from the initiation of signal transduction. *J Biol Chem* 277: 47834-47843.

124. Muzio M, Poltarutti N, Bosisio D, Prahladan MK, Mantovani A (2000) Toll like receptor family (TLT) and signalling pathway. *Eur Cytokine Netw* 11: 489-490.

125. Visintin A, Mazzoni A, Spitzer JH, Wyllie DH, Dower SK, et al. (2001) Regulation of Toll-like receptors in human monocytes and dendritic cells. *J Immunol* 166: 249-255.

126. Kagan JC, Su T, Horng T, Chow A, Akira S, et al. (2008) TRAM couples endocytosis of Toll-like receptor 4 to the induction of interferon-beta. *Nat Immunol* 9: 361-368.

127. Gruenberg J, Stenmark H (2004) The biogenesis of multivesicular endosomes. *Nat Rev Mol Cell Biol* 5: 317-323.

128. Wang Y, Chen T, Han C, He D, Liu H, et al. (2007) Lysosome-associated small Rab GTPase Rab7b negatively regulates TLR4 signaling in macrophages by promoting lysosomal degradation of TLR4. *Blood* 110: 962-971.

129. Palsson-McDermott EM, Doyle SL, McGettrick AF, Hardy M, Husebye H, et al. (2009) TAG, a splice variant of the adaptor TRAM, negatively regulates the adaptor MyD88-independent TLR4 pathway. *Nat Immunol* 10: 579-586.

130. Bihl F, Salez L, Beaubier M, Torres D, Larivière L, et al. (2003) Overexpression of Toll-like receptor 4 amplifies the host response to lipopolysaccharide and provides a survival advantage in transgenic mice. *J Immunol* 170: 6141-6150.

131. Bruscia EM, Zhang PX, Satoh A, Caputo C, Medzhitov R, et al. (2011) Abnormal trafficking and degradation of TLR4 underlie the elevated inflammatory response in cystic fibrosis. *J Immunol* 186: 6990-6998.

132. Bruscia EM, Zhang PX, Ferreira E, Caputo C, Emerson JW, et al. (2009) Macrophages directly contribute to the exaggerated inflammatory response in cystic fibrosis transmembrane conductance regulator-/- mice. *Am J Respir Cell Mol Biol* 40: 295-304.

133. Matsui H, Wagner VE, Hill DB, Schwab UE, Rogers TD, et al. (2006) A physical linkage between cystic fibrosis airway surface dehydration and *Pseudomonas aeruginosa* biofilms. *Proc Natl Acad Sci U S A* 103: 18131-18136.

134. Whitchurch CB, Tolker-Nielsen T, Ragas PC, Mattick JS (2002) Extracellular DNA required for bacterial biofilm formation. *Science* 295: 1487.

135. Worlitzsch D, Tarran R, Ulrich M, Schwab U, Cekici A, et al. (2002) Reduced oxygen concentrations in airway mucus contribute to the early and late pathogenesis of *Pseudomonas aeruginosa* cystic fibrosis airway infection. *J Clin Invest* 109: 317-325.

136. Lam HC, Cloonan SM, Bhashyam AR, Haspel JA, Singh A, et al. (2013) Histone deacetylase 6-mediated selective autophagy regulates COPD-associated cilia dysfunction. *J Clin Invest* 123: 5212-5230.

137. Leopold PL, O'Mahony MJ, Lian XJ, Tilley AE, Harvey BG, et al. (2009) Smoking is associated with shortened airway cilia. *PLoS One* 4.

138. Frasca JM, Auerbach O, Carter HW, Parks VR (1983) Morphologic alterations induced by short-term cigarette smoking. *Am J Pathol* 111: 11-20.

139. Ballenger JJ (1960) Experimental effect of cigarette smoke on human respiratory cilia. *N Engl J Med* 263: 832-835.

140. Hurst JR, Vestbo J, Anzueto A, Locantore N, Müllerova H, et al. (2010) Susceptibility to exacerbation in chronic obstructive pulmonary disease. *N Engl J Med* 363: 1128-1138.

141. Haswell LE, Hewitt K, Thorne D, Richter A, Gaça MD (2010) Cigarette smoke total particulate matter increases mucous secreting cell numbers in vitro: A potential model of goblet cell hyperplasia. *Toxicol In Vitro* 24: 981-987.

142. Wallace WA, Gillooly M, Lamb D (1992) Intra-alveolar macrophage numbers in current smokers and non-smokers: A morphometric study of tissue sections. *Thorax* 47: 437-440.

143. Hodge S, Hodge G, Ahern J, Jersmann H, Holmes M, et al. (2007) Smoking alters alveolar macrophage recognition and phagocytic ability: Implications in chronic obstructive pulmonary disease. *Am J Respir Cell Mol Biol* 37: 748-755.

144. Russell RE, Thorley A, Culpitt SV, Dodd S, Donnelly LE, et al. (2002) Alveolar macrophage-mediated elastolysis: roles of matrix metalloproteinases, cysteine, and serine proteases. *Am J Physiol Lung Cell Mol Physiol* 283: 867-873.

145. Woodruff PG, Koth LL, Yang YH, Rodriguez MW, Favoreto S, et al. (2005) A distinctive alveolar macrophage activation state induced by cigarette smoking. *Am J Respir Crit Care Med* 172: 1383-1392.

146. Xu M, Scott JE, Liu KZ, Bishop HR, Renaud DE, et al. (2008) The influence of nicotine on granulocytic differentiation - inhibition of the oxidative burst and bacterial killing and increased matrix metalloproteinase-9 release. *BMC Cell Biol* 9: 19.

147. Vandivier RW, Henson PM, Douglas IS (2006) Burying the dead: The impact of failed apoptotic cell removal (efferocytosis) on chronic inflammatory lung disease. *Chest* 129: 1673-1682.

148. Borchers MT, Wesselkamper SC, Curull V, Ramirez-Sarmiento A, Sánchez-Font A, et al. (2009) Sustained CTL activation by murine pulmonary epithelial cells promotes the development of COPD-like disease. *J Clin Invest* 119: 636-649.

149. Cohen-Cymberknob M, Shoseyov D, Kerem E (2011) Managing cystic fibrosis: strategies that increase life expectancy and improve quality of life. *Am J Respir Crit Care Med* 183: 1463-1471.

150. Hess DR (2001) The evidence for secretion clearance techniques. *Respir Care* 46: 1276-1293.

151. van der Schans C, Gates A, van der Schans CP (2000) Chest physiotherapy compared to no chest physiotherapy for cystic fibrosis. *Cochrane Database Syst Rev*.

152. Sontag MK, Quittner AL, Modi AC, Koenig JM, Giles D, et al. (2010) Lessons learned from a randomized trial of

airway secretion clearance techniques in cystic fibrosis. *Pediatr Pulmonol* 45: 291-300.

153. Flume PA, Mogayzel PJ Jr, Robinson KA, Goss CH, Rosenblatt RL, et al. (2009) Cystic fibrosis pulmonary guidelines: treatment of pulmonary exacerbations. *Am J Respir Crit Care Med* 180: 802-808.

154. Fuchs HJ, Borowitz DS, Christiansen DH, Morris EM, Nash ML, et al. (1994) Effect of aerosolized recombinant human DNase on exacerbations of respiratory symptoms and on pulmonary function in patients with cystic fibrosis. The Pulmozyme Study Group. *N Engl J Med* 331: 637-642.

155. Quan JM, Tiddens HA, Sy JP, McKenzie SG, Montgomery MD, et al. (2001) A two-year randomized, placebo-controlled trial of dornase alfa in young patients with cystic fibrosis with mild lung function abnormalities. *J Pediatr* 139: 813-820.

156. King M, Dasgupta B, Tomkiewicz RP, Brown NE (1997) Rheology of cystic fibrosis sputum after in vitro treatment with hypertonic saline alone and in combination with recombinant human deoxyribonuclease I. *Am J Respir Crit Care Med* 156: 173-177.

157. Wills PJ, Hall RL, Chan W, Cole PJ (1997) Sodium chloride increases the ciliary transportability of cystic fibrosis and bronchiectasis sputum on the mucus-depleted bovine trachea. *J Clin Invest* 99: 9-13.

158. Daviskas E, Robinson M, Anderson SD, Bye PT (2002) Osmotic stimuli increase clearance of mucus in patients with mucociliary dysfunction. *J Aerosol Med* 15: 331-341.

159. Fajac I, Wainwright CE (2017) New treatments targeting the basic defects in cystic fibrosis. *Presse Med* 46: e165-e175.

160. Davies LA, Nunez-Alonso GA, McLachlan G, Hyde SC, Gill DR (2014) Aerosol delivery of DNA/liposomes to the lung for cystic fibrosis gene therapy. *Hum Gene Ther Clin Dev* 25: 97-107.

161. Alton, Efw D, Armstrong DK, Ashby D, Bayfield KJ, Bilton D, et al. (2015) Repeated nebulisation of non-viral CFTR gene therapy in patients with cystic fibrosis: A randomised, double-blind, placebo-controlled, phase 2b trial. *Lancet Respir Med* 3: 684-691.

162. Van Goor F, Hadida S, Grootenhuis PD, Burton B, Stack JH, et al. (2011) Correction of the F508del-CFTR protein processing defect in vitro by the investigational drug VX-809. *Proc Natl Acad Sci U S A* 108: 18843-18848.

163. Yu H, Burton B, Huang CJ, Worley J, Cao D, et al. (2012) Ivacaftor potentiation of multiple CFTR channels with gating mutations. *J Cyst Fibros* 11: 237-245.

164. Wainwright CE, Elborn JS, Ramsey BW, Marigowda G, Huang X, et al. (2015) Lumacaftor-Ivacaftor in Patients with Cystic Fibrosis Homozygous for Phe508del CFTR. *N Engl J Med* 373: 220-231.

165. Levy J, Smith AL, Koup JR, Williams-Warren J, Ramsey B (1984) Disposition of tobramycin in patients with cystic fibrosis: A prospective controlled study. *J Pediatr* 105: 117-124.

166. Ramsey BW, Pepe MS, Quan JM, Otto KL, Montgomery AB, et al. (1999) Intermittent administration of inhaled tobramycin in patients with cystic fibrosis. *Cystic Fibrosis Inhaled Tobramycin Study Group*. *N Engl J Med* 340: 23-30.

167. Gibson RL, Emerson J, Mayer-Hamblett N, Burns JL, McNamara S, et al. (2007) Duration of treatment effect after tobramycin solution for inhalation in young children with cystic fibrosis. *Pediatr Pulmonol* 42: 610-623.

168. Geller DE, Pitlick WH, Nardella PA, Tracewell WG, Ramsey BW (2002) Pharmacokinetics and bioavailability of aerosolized tobramycin in cystic fibrosis. *Chest* 122: 219-226.

169. Ratjen F, Rietschel E, Kasel D, Schwierz R, Starke K, et al. (2006) Pharmacokinetics of inhaled colistin in patients with cystic fibrosis. *J Antimicrob Chemother* 57: 306-311.

170. Permin H, Koch C, Høiby N, Christensen HO, Møller AF, et al. (1983) Ceftazidime treatment of chronic *Pseudomonas aeruginosa* respiratory tract infection in cystic fibrosis. *J Antimicrob Chemother* 12: 313-323.

171. Pamp SJ, Gjermansen M, Johansen HK, Tolker-Nielsen T (2008) Tolerance to the antimicrobial peptide colistin in *Pseudomonas aeruginosa* biofilms is linked to metabolically active cells, and depends on the pmr and mexAB-oprM genes. *Mol Microbiol* 68: 223-240.

172. Jensen T, Pedersen SS, Garne S, Heilmann C, Høiby N, et al. (1987) Colistin inhalation therapy in cystic fibrosis patients with chronic *Pseudomonas aeruginosa* lung infection. *J Antimicrob Chemother* 19: 831-838.

173. Hoiby N, Pressler T (2006) Emerging pathogens in cystic fibrosis. *Eur Respir Mon* 35: 66.

174. Govan JR, Fyfe JA (1978) Mucoid *Pseudomonas aeruginosa* and cystic fibrosis: Resistance of the mucoid form to carbenicillin, flucloxacillin and tobramycin and the isolation of mucoid variants in vitro. *J Antimicrob Chemother* 4: 233-240.

175. Cabral DA, Loh BA, Speert DP (1987) Mucoid *Pseudomonas aeruginosa* resists nonopsonic phagocytosis by human neutrophils and macrophages. *Pediatr Res* 22: 429-431.

176. Yoon SS, Coakley R, Lau GW, Lymar SV, Gaston B, et al. (2006) Anaerobic killing of mucoid *Pseudomonas aeruginosa* by acidified nitrite derivatives under cystic fibrosis airway conditions. *J Clin Invest* 116: 436-446.

177. Kirk R, Edwards LB, Aurora P, Taylor DO, Christie JD, et al. (2009) Registry of the international society for heart and lung transplantation: Twelfth official pediatric heart transplantation report-2009. *J Heart Lung Transplant* 28: 993-1006.

178. Liou TG, Adler FR, Cox DR, Cahill BC (2007) Lung transplantation and survival in children with cystic fibrosis. *N Engl J Med* 357: 2143-2152.

179. Sweet SC, Aurora P, Benden C, Wong JY, Goldfarb SB, et al. (2008) Lung transplantation and survival in children with cystic fibrosis: Solid statistics--flawed interpretation. *Pediatr Transplant* 12: 129-136.

180. Cazzola M, Page CP, Rogliani P, Matera MG (2013) β -agonist therapy in lung disease. *Am J Respir Crit Care Med* 187: 690-696.

181. Tashkin DP, Celli B, Senn S, Burkhardt D, Kesten S, et al. (2008) A 4-year trial of tiotropium in chronic obstructive pulmonary disease. *N Engl J Med* 359: 1543-1554.

182. Yohannes AM, Connolly MJ, Hanania NA (2013) Ten years of tiotropium: Clinical impact and patient perspectives. *Int J Chron Obstruct Pulmon Dis* 8: 117-125.

183. Aaron SD, Vandemheen KL, Fergusson D, Maltais F, Bourbeau J, et al. (2007) Tiotropium in combination with placebo, salmeterol, or fluticasone-salmeterol for treatment of chronic obstructive pulmonary disease: A randomized trial. *Ann Intern Med* 146: 545-555.

184. Barnes PJ (2011) Triple inhalers for obstructive airways disease: Will they be useful? *Expert Rev Respir Med* 5: 297-300.

185. Reid DJ, Pham NT (2012) Roflumilast: A novel treatment for chronic obstructive pulmonary disease. *Ann Pharmacother* 46: 521-529.

186. Decramer M, Janssens W (2010) Mucoactive therapy in COPD. *Eur Respir Rev* 19: 134-140.

187. Tarrant BJ, Le Maitre C, Romero L, Steward R, Button BM, et al. (2017) Mucoactive agents for chronic, non-cystic fibrosis lung disease: A systematic review and meta-analysis. *Respirology* 22: 1084-1092.

188. Albert RK, Connett J, Bailey WC, Casaburi R, Cooper JA Jr, et al. (2011) Azithromycin for prevention of exacerbations of COPD. *N Engl J Med* 365: 689-698.

189. Tonnesen P (2013) Smoking cessation and COPD. *Eur Respir Rev* 22: 37-43.

190. Proctor RA, von Eiff C, Kahl BC, Becker K, McNamara P, et al. (2006) Small colony variants: A pathogenic form of bacteria that facilitates persistent and recurrent infections. *Nat Rev Microbiol* 4: 295-305.

191. Hanna SL, Sherman NE, Kinter MT, Goldberg JB (2000) Comparison of proteins expressed by *Pseudomonas aeruginosa* strains representing initial and chronic isolates from a cystic fibrosis patient: An analysis by 2-D gel electrophoresis and capillary column liquid chromatography-tandem mass spectrometry. *Microbiology* 146: 2495-2508.

192. Mathee K, Narasimhan G, Valdes C, Qiu X, Matewish JM, et al. (2008) Dynamics of *Pseudomonas aeruginosa* genome evolution. *Proc Natl Acad Sci U S A* 105: 3100-3105.

193. Rao J, Damron FH, Basler M, Digiandomenico A, Sherman NE, et al. (2011) Comparisons of Two Proteomic Analyses of Non-Mucoid and Mucoid *Pseudomonas aeruginosa* Clinical Isolates from a Cystic Fibrosis Patient. *Front Microbiol* 2: 162.

194. Sopori M (2002) Effects of cigarette smoke on the immune system. *Nat Rev Immunol* 2: 372-377.