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Abstract

Cystic fibrosis (CF) and chronic obstructive pulmonary disease
(COPD) are chronic pulmonary diseases that affect ~70,000
and 251 million individuals worldwide, respectively. Although
these two diseases have distinctly different pathophysiologies,
both cause chronic respiratory insufficiency that erodes quality
of life and causes significant morbidity and eventually death.
In both CF and COPD, the respiratory microbiome plays a
major contributing role in disease progression and morbidity.
Pulmonary pathogens can differ dramatically during various
stages of each disease and frequently cause acute worsening
of lung function due to disease exacerbation. Despite some
similarities, outcome and timing/type of exacerbation can also
be quite different between CF and COPD. Given these clinical
distinctions, both patients and physicians should be aware
of emerging therapeutic options currently being offered or in
development for the treatment of lung infections in individuals
with CF and COPD. Although interventions are available that
prolong life and mitigate morbidity, neither disorder is curable.
Both acute and chronic pulmonary infections contribute to an
inexorable downward course and may trigger exacerbations,
culminating in loss of lung function or respiratory failure.
Knowledge of the pulmonary pathogens causing these
infections, their clinical presentation, consequences, and
management are, therefore, critical. In this review, we compare
and contrast CF and COPD, including underlying causes,
general outcomes, features of the lung microbiome, and
potential treatment strategies.
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Clinical Perspective

CF is a lethal recessive autosomal disorder observed
predominately among Caucasians [1]. The disease is
caused by mutation of the cystic fibrosis transmembrane
conductance regulator (CFTR), a protein expressed in
many epithelia (Figure 1). By far the greatest negative
consequence of CF is progressively deteriorating lung
function. Loss of CFTR causes complications that also
include pancreatitis, hepatic injury, nasal polyposis,
digital clubbing, meconium ileus, and other intestinal
obstructive symptoms [2]. An important activity of CFTR
is to regulate anion (e.g. chloride (Cl') and bicarbonate
(HCO,-)) secretion and absorption in epithelial tissues
[3]. Without this cellular activity, imbalance of exocrine
secretion and composition leads to hyperviscous mucus
in numerous secretory organs [4].

CF typically causes pulmonary symptoms that
include chronic cough and sputum production, airway
obstruction, wheezing and air trapping, and persistent
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Figure 1: Loss of CFTR drives defective mucociliary transport in cystic fibrosis. (A) Normal mucus formation is dependent
upon chloride, fluid, bicarbonate and pH homeostasis, which is in part maintained via CFTR activity; (B) The submucosal
glands in lung tissues produce secretions that enable effective transport of mucus by ciliary beating of airway epithelial cells.
In contrast, depletion of CFTR mediated fluid and electrolyte transport; (C) Alters periciliary fluid composition and is associated
with enhanced potential difference attributable to ENaC mediated Na* transport. The surface epithelium and submucosal gland
abnormalities confer a surface liquid and mucus environment of lower pH, diminished surface liquid depth, and increasing
mucous viscosity; (D) Combination of depleted ASL volume and fluidity, coupled with changes in ion balance, allow for the
proliferation and reduced clearance of bacteria such as Pseudomonas aeruginosa.
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Figure 2: CF Chest X-ray and predicted FEV, measurements over time.
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colonization/infection by a myriad of microorganisms
(6). Bacteria involved in such infections include
Staphylococcus aureus, Pseudomonas aeruginosa, and
Burkholderia cepacia. Others, such as Haemophilus
influenzae, Klebsiella pneumoniae, Stenotrophomonas
maltophilia, Achromobacter xylosoxidans, and non-
tuberculous mycobacteria are increasingly recognized
as important CF pathogens [5,6].

Nearly 2,000 mutations in CFTR have been
documented, many of which are associated with clinical
disease (CFTR2 database at cff.org). The most common
mutation is A508. The phenylalanine at position 508 of
the protein [7] is situated in the first CFTR nucleotide
binding domain (NBD) and serves to both stabilize the
overall NBD and allow proper interactions between
NBD1 and downstream CFTR elements such as cytosolic
loop 4 [8]. The A508 mutation leads to a protein
that functions as an ion channel but is not trafficked
efficiently to the cell surface and exhibits diminished
half-life in the plasma membrane. The A508 protein also
exhibits defective channel gating function [9]. Unlike
normal airways, abnormalities of exocrine secretion
lead to hyperviscous mucus, which adheres to the
airway surface and apical membranes of numerous
epithelia (an example of which is depicted in Figure 2).
In airway glands, abnormalities prevent detachment
of mucus strands from glandular ostea, compounding
mucus viscosity and hindering clearance. Because
mucociliary activity represents an essential component
of airway defense against infection, the lungs become
highly susceptible to bacterial colonization [10].

The lifespan of patients with CF has dramatically
increased due to new therapeutic interventions and
improved understanding of the disease (www.cff.org).
In particular, median life expectancy in 1985 was < 25
years, and by 2017 had reached > 40 years. Despite
these advances, morbidity and mortality attributable
to respiratory infection remain prevalent. An enduring
priority to increase the survival of individuals with
CF has been the exploration of new and innovative
antimicrobial, anti-infective, mucolytic, and other
treatment strategies.

Chronic obstructive pulmonary disease

Chronic obstructive pulmonary disease (COPD) is
an increasingly prevalent chronic disease affecting
Americans and others worldwide, that is rapidly
becoming a leading cause of death internationally
[11,12]. However, unlike CF, COPD is a potentially
preventable and non-lethal (with proper patient
compliance) and a treatable disease that is usually
characterized by airflow limitation, intensified lung and
systemic inflammation, episodic exacerbations, and
comorbidities [13]. The systemic nature of COPD is very
different from that of CF. The manifestation of systemic
COPD includes a variety of factors that are not limited
to cardiovascular disease, osteoporosis, depression,
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Figure 3: Normal posterior anterior chest radiograph.
Vascular markings within respiratory parenchyma attenuate
in the lateral one third of both lungs. The diaphragms have
a dome shaped configuration.

weight loss and skeletal muscle issues [14]. Until
recently, airflow limitation, a reduction in the exhalation
of air due to increased airway resistance and dynamic
airway collapse has been an essential element for the
diagnosis of COPD. Airflow limitation is quantified by
the ratio of FEV, (forced expiratory volume in 1 sec) to
FVC (forced vital capacity) and is present when this ratio
is less than a threshold value. Typical threshold values
are an absolute value of 0.7 or the lower limit of normal
(LLN). The LLN represents the 5% percentile of the
distribution of the FEVl/FVC ratio in nonsmokers with
no lung disease. Recent investigations show that some
individuals with radiographic evidence of emphysema
may not have physiologic evidence of airflow limitation
[15]. COPD is commonly viewed as two processes,
chronic bronchitis and emphysema, with overlapping
clinical, radiographic, and physiologic findings (please
refer to Figure 3, Figure 4 and Figure 5 for examples).

There may be a connection between COPD-
bronchiectasis as a subtype of COPD, but this notion
remains unclear. Thus, at this time, it is premature to
classify COPD-bronchiectasis as a subtype of COPD
and therefore comparison between CF and COPD-
bronchiectasis lacks merit. The only paper that comes
remotely close to such a posit is by Blasi, et al. [16].
Still, epidemiologic studies of COPD implicate multiple
etiologic risk factors including allergies and hyper-
responsiveness to airborne particulates, as well as
recurrent bronchopulmonary infections [17]. But by
far, the single most deleterious cause is long-term
exposure to tobacco smoke. In 2011, the prevalence
of COPD among US adults was 5.2% for men and 6.7%
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for women and 76% of those individuals with self-
identified COPD were current or former smokers [18].
COPD normally presents later in life after prolonged risk
factor exposure. Although tobacco smoke inhalation is

Figure 4: Chest radiograph of an individual with severe
emphysema. Lung fields are greatly enlarged and exhibit
paucity of vascular markings throughout. Diaphragms are
flattened and have lost their normal dome configuration.

the major risk factor for the development of COPD, a
comparatively small proportion of smokers develop the
condition. Nearly one quarter of individuals with COPD
have no smoking history [19]. Indoor and outdoor air
pollution, workplace aerosolized chemicals, dusts, and
fumes, and respiratory infections including tuberculosis
are other exposures associated with the development of
COPD [19-21]. Genetic factors predisposing individuals
to COPD are poorly understood.

The primary clinical manifestations of COPD are
breathlessness, cough, and sputum production dyspnea
[22]. Breathlessness is caused mainly by dynamic
hyperinflation with exertion which produces air trapping
and diminished tidal volumes. Airflow limitation may
also contribute to shortness of breath. Cough and
sputum production are caused by hyperplasia and
hypertrophy of mucus producing airway epithelial cells,
colonization of the lower airway by bacterial pathogens,
and the eventual structural derangement of the
airways leading to the development of bronchiectasis
(permanent enlargement and structural alteration of
the lower bronchi) [23].

COPD is primarily a pulmonary disorder but may
also affect multiple other organ systems. Much of the
initial morbidity associated with COPD is caused by
cardiovascular and other manifestations believed to
be mediated through systemic inflammation. Other
associated clinical findings include musculoskeletal

Figure 5: (A) Upper lung zone; (B) Mid lung zone; (C) Lower lung zone. Computed tomography of an individual with severe
emphysema. Lung parenchyma is destroyed and replaced by cysts and blebs. Areas of more normal lung are compressed

by hyperinflated emphysematous lung tissue.
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disorders (osteopenia and osteoporosis that culminate
in fractures), diabetes, anemia of chronic inflammation,
and psychological effects such as anxiety and depression
due to chronic breathlessness, reduced physical
function, and social isolation. Lung inflammation and
its subsequent systemic dissemination in COPD has also
been implicated as a contributor to coronary artery
disease, congestive heartfailure, obesity, endocrinologic
dysfunction, osteoporosis, and other health issues [24].

Prevention of COPD through smoking avoidance
or cessation is the most important element of COPD
management. Once the disorder has been correctly
diagnosed, management is both pharmacologic and
nonpharmacologic. COPD is treatable but cannot be
reversed due to chronic lung remodeling and permanent
anatomic destruction.

COPD medication management begins with a short
acting bronchodilator and then gradually escalates with
the addition of long acting anticholinergics, long acting
beta agonists, and finally inhaled corticosteroids. An-
tibiotics and systemic steroids are often used to treat
acute COPD exacerbations due to infections. Selective
phosphodiesterase inhibitors and macrolide antibiotics
may be used for individuals with frequent exacerba-
tions. Not adhering to treatments is associated with a
40% increased likelihood of hospitalization [25]. Non-
pharmacologic therapies include supplemental oxygen,
vaccinations, lung volume reduction surgery, lung trans-
plantation, and pulmonary rehabilitation.

COPD exacerbations occur episodically throughout
the disease course and are characterized by increased
respiratory symptoms, especially breathlessness,
cough, and sputum production, that are more
pronounced than their usual day to day variation
[26]. Similar to CF, patients with COPD exhibit chronic
inflammation and hypersecretion of mucus that may
become more pronounced during exacerbations [17].
Mucus overproduction is associated with mucosal
gland hypertrophy, increased numbers of epithelial
goblet cells, and damaged cilia. This excessive mucus
and deranged mucociliary clearance mechanism may
manifest clinically as increased and forceful coughing
with excessive phlegm production and may contribute to
bacterial colonization and infection of the lower airways
that propagate a cycle of progressive inflammation and
derangement of lung structure. Just as in CF, disease
worsening is associated with colonization and invasion
of respiratory tissue by bacterial pathogens.

Pathogenic bacteria in the CF lungs

The lungs of CF patients become chronically infected
with a myriad (potentially > 100 different genera) of bac-
teria, leading to a poorer clinical prognosis [27]. Major
pathogens include members of non-tubercle mycobac-
teria (Mycobacterium abscessus, M. avium, M. intracel-
lulare, M. fortuitum, M. gordonae, M. kansasii), Staph-
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ylococcus aureus, Pseudomonas aeruginosa, Burkholde-
ria cepacia complex (BCC, genomovar | (B. cepacia), I
(B. multivorans), ll (B. cenocepacia), IV (B. stabilis), V
(B. vietnamiensis), V1 (B. dolosa), VII (B. ambifaria), VI
(B. anthina), IX (B. pyrrocinia), Burkholderia gladioli and
Burkholderia pseudomallei. Minor pathogens include
Achromobacter xylosoxidans, Inquilinus limosus, Ralsto-
nia sp., Pandoraea apista, Streptococcus pneumoniae,
Stenotrophomonas maltophilia, Haemophilus influenzae
and Bordetella bronchiseptica. In addition to the afore-
mentioned bactéria, strict anaerobes have increasingly
been encountered and include the genera, Prevotella,
Veillonella, Propionibacterium and Actinomyces. These
organisms were derived from a superb microbiological
CF assessment by Coutinho, et al. [28].

With this information in hand, we must emphasize
that the predominant infecting organisms change with
age; for example, S. aureus is often a major species
during childhood. As CF patients become older, the
opportunistic pathogen P. aeruginosa becomes more
firmly established, eventually outgrowing most other
species, which remain presentin lesser numbers [29,30].

Patients given antimicrobial treatment focused on
P. aeruginosa eradication may develop niches that
other pathogens occupy, leading to a remarkably
complicated biologic flora [31]. S. aureus, and the more
resilient methicillin-resistant S. aureus (MRSA), are
Gram-positive cocci that are isolated from 71% and 26%
of CF patients, respectively. The prevalence of these
organisms has been increasing.

As described above, S. aureus is typically an early
colonizer of CF lungs, likely because the organism is a
common commensal on skin and in the respiratory tract
of humans. Colonization occurs at an early age and is
usually present at some level throughout the life of
patients with the disease. Before standardized use of
antibiotic regimens such as respiratory flucloxacillin
and dicloxacillin [32], S. aureus was the leading cause of
death in CF. This organism is now managed with more
effective antimicrobials. Itisimportant to note, however,
that high staphylocidal activity for an antibiotic may not
be sufficient to eradicate an infection, in part due to
inability of cilia to properly expel viscous and infected
mucus from the lungs of individuals with CF [33].

S. aureus isolates from individuals with CF have been
shown to exhibit a distinct “small colony” morphology
[34,35] (Figure 6). Colonies of this type have decreased
virulence properties, produce less alpha toxin (a
hemolytic protein), and elaborate no pigment [36].
This phenotype may help mask the organism from
recognition by the immune system, thereby preventing
clearance. In addition, small colony variants have
increased antibiotic resistance properties, and exposure
to aminoglycosides (e.g. gentamicin) promotes
conversion to the phenotype. Even after selective
pressure elicited by antibiotic treatment is removed,
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Figure 6: (A) Normal S. aureus; (B) S. aureus with small colony phenotype. With permission from [190]. Permissions from
Copyright Clearance Center - Rightslink, order number: 4336070213221.

small colony morphology persists [34-37]. Antibiotic
resistance in this setting may result from lower bacterial
uptake of aminoglycosides and/or use of exogenous
nucleic acids to combat the effect of antifolates [38,39].

As CF patients become older, P. aeruginosa typically
becomes more prominent despite aggressive antibiot-
ic treatment [40,41]. Resistance is due in part to ability
of the organism to form highly antibiotic- and phago-
cyte-refractory biofilms - complex microbial communi-
ties enmeshed within the thick CF airway mucus. The
formation of biofilms is associated with the ability to
guorum sense (QS), a process of inter-cellular signaling
(i.e., bacterial communication) through secreted ex-
tracellular signaling molecules that coordinate biofilm
formation and structure [42]. P. aeruginosa is known
to use QS during CF lung infection, including QS auto-
inducers PAI-I and PAI-2, which are detected in CF spu-
tum [43]. Bacteria in biofilms develop phenotypic dis-
tinctions compared with those bacteria associated with
acute infections. For example, chronic organisms often
become mucoid (alginate-overproducing), non-motile,
non-flagellated, lipopolysaccharide-deficient, auxotrop-
hic and/or antibiotic-resistant [44,45]. From among this
multitude of alterations, the most common and clinical-
ly devastating is mutation of the mucA gene, encoding
an anti-sigma factor that binds AlgT(U), a transcription-
al regulator involved in production of alginate and the
process of mucoid conversion. The mucoid phenotype
is characterized by overproduction of highly viscous al-
ginate expolysaccharide and represents an important
step during establishment of chronic and fatal CF lung
infections [46-49]. The switch or trigger for a mucoid
phenotype has been associated with steep oxygen gra-
dients within the thick airway CF mucus [50] (Figure 7).

During chronic infection, high bacterial mutation
rates facilitate P. aeruginosa adaptation to an ever-
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Figure 7: Phenotypes of two distinct P. aeruginosa CF
isolates (383 and 2192) on L agar media. The strains were
obtained 2 days apart from the same CF patient, and are
otherwise isogenic [191]. The genome of strain 2192 has
been sequenced [192], from [193].

changing environment. “Hypermutable” strains are
more common in CF lungs that are chronically infected
compared with those that are acutely infected [51].
Such strains exhibit changes in proofreading and DNA
repair, allowing for rapid development of strain to
strain differences (potentially including mucA loss
of function [52]. Polymorphisms observed in one
patient sample may be restricted to that individual,
suggesting genetic and phenotypic evolution occurs
longitudinally after initial lung infection [51]. These
individualized lung microbiomes can be attributed
to the compartmentalized nature of the pulmonary
anatomy and varying evolutionary pressures, such as
differing concentrations of antibiotics that select for the
more resistant organisms [53,54].
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B. cepacia represents another clinically important
pathogen in CF lung disease. This organism, formerly
termed Pseudomonas cepacia, has been recategorized
as B. cepacia complex (BCC), a group of at least 20
genetically distinct, but phenotypically similar bacteria
[55-57]. Members of BCC are gram-negative, catalase
positive, obligate aerobic bacilli that can persist in the
presence of certain disinfectants and readily survive with
minimal nutrition. Infection with BCC, first recognized in
the CF patient population in the late 1970s, has been
associated with severe worsening of CF pulmonary
reserve and poor clinical prognosis [58-60]. Similar to
P. aeruginosa, BCC has the ability to form biofilms in
vivo, potentially impacting antibiotic resistance [61,62].
Although formation of BCC biofilms may help establish
initial infection, in contrast to P. aeruginosa, there is
an inverse relationship between exopolysaccharide
production and decline of CF pulmonary reserve. This
difference may be due in part to an increased surface
expression of virulence factors by nonmucoid BCCstrains
[63]. The switch to mucoidy in BCC has been attributed
to a more metabolically dormant and less aggressive
phenotype. Overall, however, BCC infection confers a
poor prognosis [64-67], and BCC has been suggested to
outcompete P. aeruginosa in CF lungs. This advantage
may be due to a primary siderophore, ornibactin, that is
far more effective at obtaining iron from the host than
the two primary P. aeruginosa siderophores, pyoverdine
and pyochelin [68].

Other pathogens, including H. influenzae and S.
maltophilia, are also frequent CF lung colonizers, with
prevalence rates of 15.5 and 13.6%, respectively. H.
influenzae, a gram-negative coccobacillus, is sometimes
the earliest infectious organism recovered from very
young CF patients, and causes chronic inflammation
similar to P. aeruginosa [69,70]. It has been suggested
that infection by H. influenzae (and consequent
inflammation) early in life might increase susceptibility
to infection by P. aeruginosa [71]. The prevalence of S.
maltophila, a gram-negative bacillus, appears to have
increased due to use of anti-pseudomonal drugs [72].
These bacteria are emblematic of a pathogenically
significant microbiome that includes many organisms of
unknown pathogenic significance. As certain niches are
emptied over the course of a CF patient’s lifetime, new
bacteria adapt to inhabit these microenvironments.

Bacterial/Viral infections in COPD

Similar to CF, the lungs of individuals with COPD are
chronically infected yet with many similarities and dif-
ferences. Although S. pneumoniae, Haemophilus influ-
enzae and Moraxella catarrhalis are the predominant
pathogens, others that have been identified include My-
coplasma pneumoniae, P. aeruginosa, Citrobacter freun-
dii, S. aureus, Enterobacter cloacae, Stenotrophomonas
maltophilia, Klebsiella pneumoniae, Proteus mirabilis,
and Serratia marcescens [73]. Viruses identified include
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parainfluenza virus, influenza virus, RSV, and rhinovirus.

Predominant COPD pathogens.

M. catarrhalis and S. pneumoniae are two pf the most
frequent species commonly cultured from the lungs
of individuals with COPD, although their prevalence is
less than in CF. A gallery of similar pathogens is found
in COPD compared with CF, although the dominant
organisms are different. Non-typable H. influenzae
(NTHi) is the most common infectious bacterium
observed in COPD and colonizes 60% of COPD patients
[23,74-79]. During acute exacerbations, NTHi is the
most likely bacterium to be found in the airway [74-78].
Since NTHi is cultured from individuals with stable COPD
as well as during exacerbations, it has been suggested
that these bacteria stimulate an inflammatory response
in both clinical scenarios, and exacerbations tend to
be more severe when NTHi is present. In addition,
acquisition of new strains of NTHi increase the risk of
frequent exacerbations [80-82]. NTHi has the ability to
avoid clearance from the lungs contributing to its status
as a refractory pathogen. The organism uses outer
membrane proteins P2 and P5 to facilitate bacterial
binding to respiratory mucus by lipooligosaccharide
(LOS), alow molecular weight version of the more typical
bacterial LPS. This pathogenic mechanism causes ciliary
dysfunction, diminishing mucus clearance [83,84]. To
further defend itself during infection, NTHi also secretes
IgA proteases that bind and degrade IgA (the major
antibody in mucosal secretions), reducing levels of IgA
in the airway lumen, and, thereby, decreasing the ability
to clear the organism. This adaptation not only allows
NTHi to flourish, but also promotes growth and airway
colonization of other pathogens, leading to complex
infections that are difficult to eradicate. The same
interactions have been reported after NTHi infection in
CF lungs [85,86].

It is interesting to note that M. catarrhalis, a gram-
negative diplococcus and commensal organism in the
upper respiratory tract of humans was not initially
deemed a pathogen in COPD. This bacterium was
isolated frequently from the sputum of COPD patients,
but its pathogenic capacity was not recognized until
the early 1990’s [87-89]. Since then, the organism has
been established as a major cause of lung infections
in COPD and a leading cause of exacerbations [90-93].
By adhering to epithelial cell surfaces, M. catarrhalis is
able to persist in the lungs and elicit chronic infection.
This propensity is stimulated by host immune defensins
[94]. With a robust immune response, M. catarrhalis is
stimulated to adhere to the cell surface, mediated by
UspA, which binds to carcinoembryonic antigen-related
cell adhesion molecules at the epithelial cell plasma
membrane [95]. This interaction further promotes an
airway inflammatory response. Along with the ability
to adhere, ~90 percent of M. catarrhalis strains found
in the lower respiratory tract resist complement-
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Figure 8: A. L-agar plate of mucoid P. aeruginosa derived from a chronically infected COPD patient. B. Confocal laser
scanning micrograph of sputum from the same patient with live (green)/dead (red) staining.

mediated killing by the immune system by virtue of a
disulfide bond formation system that helps stabilize
the lipopolysaccharide resisting complement attack
[96,97]. Despite this survival mechanism, the organism
remains susceptible to most antibiotics used to treat
respiratory tract infection. An exception is resistance
to trimethoprim and R-lactams, which occurs through
naturally insensitive dihydrofolate reductase enzymes
and the production of a B-lactamase [98-101].

Another common pathogen in COPD lungs is
the gram-positive coccus, S. pneumoniae, typically
found in the respiratory tract during both periods
of both stability and exacerbation. As many COPD
exacerbations are associated with bacterial lung
infections, patients with sputum cultures revealing S.
pneumoniae are not infrequently placed empirically on
antibiotics stimulating a higher prevalence of antibiotic
resistance among pneumococcal species [102]. S.
pneumoniae is known to cause both exacerbations and
an increased risk for pneumonia in patients with COPD
[103,104]. Acute exacerbation is elicited by bacterial
virulence factors and the immune response to new
infection. An important virulence factor in this setting
is the polysaccharide capsule that mediates evasion
from immune clearance. Capsular features may be
helpful in identifying pathogenic potential of various
pneumococcal species [105].

The presence of S. pneumoniae confers a higher
risk of exacerbation in COPD, but interestingly only
when cultured in the absence of other pathogens. In
mixed culture, the risk of exacerbation does not appear
to be elevated, which suggests that singular culture
represents a more virulent species [106]. Pneumococcal
vaccines help reduce invasive infections caused by the
many prevalent S. pneumoniae serotypes by inducing
an adaptive immune response [107,108].

Although P. aeruginosa causes chronic respiratory
infection in COPD, it occurs much less frequently than in
CF. Stillthe organismis associated with considerable levels
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of respiratory impairment [109-112] and is isolated in 6%
of acute COPD exacerbations. An increased prevalence
of multi-drug resistant strains is observed in critically-
ill patients [110,111,113]. Exacerbations can be most
readily attributed to P. aeruginosa during acquisition of a
new strain which elicits an exuberant immune response
[114]. The immune system responds by stimulating
additional virulence factors from the P. aeruginosa as
well as further inflammation. Moreover, the presence of
the mucoid phenotype may be observed in this setting,
and, just as in CF, these mucoid strains persist in the lungs
as biofilms (Figure 8), while non-mucoid strains may not.
The mucoid P. aeruginosa phenotype less common in
COPD compared with CF, and the estimated prevalence’s
are 8% and 48%, respectively [115].

Innate Immune System

Innate immune dysfunction in CF

The biochemical and cellular derangements of CF
produce innate immune system dysfunction. A nor-
mal component of innate lung defense is mechanical
clearance of airway secretions by cilia on the epithelial
cell surface [116-118]. Viscous mucus has several ma-
jor consequences in the airway. First, as noted above,
mucus compresses cilia against the cellular surface, and
inhibits proper ciliary activity. Second, due to an already
decreased clearance capacity, mucus directly interacts
with the epithelial cell membrane. Over time, concen-
trated mucins directly anneal to the epithelial layer, and
cannot be cleared by the cilia or by natural mechani-
cal disruption (e.g. coughing or chest physical therapy)
[119]. These factors contribute to the characteristic mu-
cus stasis and inflammation in the CF lungs A build-up
of impacted mucus often begins at birth and continues
throughout life in individuals with CF [120,121]. If it is
not cleared, mucus forms an ideal niche that permits
colonization by opportunistic microorganisms. Mucus
plague formation provides a surface on which bacte-
ria adhere and form biofilms, which further increases
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plaque surface exopolysaccharide content, establishing
a cyclical process of bacterial adherence, biofilm forma-
tion, and mucus plaque accumulation (Figure 9).

A second underlying problem with immune respon-
siveness in CF patients is the abnormal degradation and
cell trafficking of Toll-like Receptor 4 (TLR4). Normally,
TLR4 receptor is present within the Golgi [122,123] and
may migrate to the cell surface and bind LPS as part of a
receptor complex that assembles on lipid rafts and acti-
vates NF-KB and MAPK pathways [124,125]. Subsequent-
ly, the receptor is ubiquitinated and becomes associated
with endosomes, where it activates INFR3 [122,126,127].
These events contribute to the degradation of TLR4, and
even subtle changes in this mechanism can perturb the
immune response [122,128-130]. Abnormal trafficking of
TLR4 leads to increased LPS-induced activation involving
multiple components of immune activity, including NF-
KB, MAPK signaling, and IFN regulatory factor-3 (IFNR3)
[131]. Along with increased immunological responsive-
ness, these events may decrease TLR4 degradation,
which further disrupts airway defense. Macrophages
from CF patients may be hyper-responsive to bacterial
LPS [132], due, in part, to abnormal TLR4 trafficking [132].

CFalsodramaticallyaffectsfunctionandaccumulation
of phagocytes in lung tissues [133]. Neutrophils, which
accumulate to nearly 1500-fold above their normal
levels, have impaired migration through the mucus
in an attempt to clear bacteria before refractory

Fenker et al. Int J Respir Pulm Med 2018, 5:098

biofilms are established, which may allow changes in
the bacterial phenotype, including mucoid conversion
of P. aeruginosa [133-135]. Ineffective attempts at
bacterial killing by neutrophils increase DNA deposition
associated with neutrophil extracellular traps (NETs),
which further contribute to mucus viscosity. Not only
is the ability of neutrophils to phagocytose bacteria
compromised, but steep oxygen gradients established
by pathogens in airway secretions significantly impact
generation of microbicidal reactive oxygen species
(ROS) [135]. Without ROS (or reactive nitrogen species),
neutrophil function is substantially compromised.

Innate immune dysfunction in COPD

Unlike CF airway, disease cigarette smoking is the major
etiologic factor contributing to the development of COPD
and this exposure elicits multiple innate immune system
derangements (Figure 10). Cigarette smoke (CS) directly
impairs mucociliary clearance [136], including both ciliary
shortening and physiologic function [137-139]. Direct cell
death from CS exposure also leads to re-epithelialization
that is dominated by goblet cells, a cellular compartment
associated with mucus production [140,141]. Shortened
cilia after CS exposure are associated with histone
deacetylase 6-mediated selective auto phagocytosis and
further degradation of cilia [136]. Chronic reduction in
mucociliary clearance promotes susceptibility to bacterial
infection in patients with COPD, just as in CF.
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CS also affects resident immune cells of the lung. These
effectsinclude increased numbers of alveolar macrophages
and reduced ability to clear apoptotic cells and bacterial
infections, due to impaired monocyte differentiation and
lowered expression of surface recognition molecules
[142,143].CSalsoincreases expression of pro-inflammatory
chemokines and matrix metalloproteases, which suggest a
change in macrophage chemokine phenotype [144,145].
Neutrophil ROS production regulates the phagocytic
respiratory burst, and phagocytosis impairment during
differentiation is another factor contributing to reduced
bacterial clearance in COPD [146]. Failure of neutrophil
function is compounded by reduced antimicrobial capacity
of macrophage apoptosis. The polymorphonuclear cell
derangements in COPD may also increase extravasation
of lysozymes and granules into the extracellular space,
contributing to pulmonary structural damage [147].

Activity of natural killer (NK) cells, which normally
contribute to eradication of viral pathogens, is increased
by CS. Elevated expression of epithelial cell surface
ligands is associated with CS exposure and stimulates
the NK cell by binding to the NKG2D receptor. These
activated NK cells may promote airway epithelial cell
apoptosis and tissue damage due to dysregulated
inflammation [148].

Novel Treatment Strategies

Treatment of CF and removal of biofilms

Key aspects of CF treatment have traditionally focused
on addressing symptoms of the disease, but more recently
have included interventions directed towards correcting
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fundamental physiologic abnormalities caused by
mutation of CFTR. Symptomatic or palliative treatments,
for example, include compensation for pancreatic
insufficiency with supplemental pancreatic enzymes,
high calorie diets with inclusion of fat-soluble vitamins,
and anti-inflammatory agents to slow progression of
respiratory function decline. General interventions for
lung disease also encompass chest physical therapy and
inhaled treatments to improve mucus clearance, together
with antibiotic therapy for infection control [149].

Failure of mucus clearance is a hallmark of CF
pathogenesis, and a number of treatments have been
developed to overcome this defect. Mechanical devices
and patient compliant actions (chest physical therapy,
aerobic exercise, etc.) increase mucus mobilization, and
are part of standard CF clinical care. Treatments include
use of active cycle breathing techniques and autogenic
drainage, a breathing technique used to mobilize mucus
up the airway, where it can be more easily cleared by
coughing. Positive expiratory pressure masks and high
frequency chest wall oscillation can aid in this process
[150,151]. Prescription of these methods is typically
provided on an individualized basis, as there is no
evidence that one technique works more effectively in
all cases [152]. Furthermore, it is not established that
use of airway clearing techniques is beneficial in the
early stages of CF, when there may be little sign of lung
impairment, and build-up of mucus is less pronounced.
That being said, recent treatment guidelines often
recommend daily airway clearance and aerobic exercise
to help improve mucus clearance as a means to improve
patient health [153].
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Mucolytic compounds are used to breakdown
excess mucus lining the airways. In addition to
airway secretions, themselves, DNA from neutrophil
extracellular traps contributes significantly to increased
CF sputum viscosity. Use of recombinant human DNase,
such as dornase alfa, can be used to decrease viscosity
and augment lung function [154,155]. Another useful
mechanism is increased hydration of airway secretions.
Inhaled agents such as hypertonic saline (7%) stimulate
movement of vascular water into thick airway
secretions, helping cilia mobilize sputum and promote
cough-mediated clearance [156-158].

Newer modes of treatment aim to target basic
genetic defects responsible for CF [159]. One such
technique is to bypass or repair DNA and/or mRNA
encoding mutant CFTR protein. Approaches using viral
vectors - e.g. adeno-, adeno-associated, or retro-viruses
-were used toinsert functioning copies of the CFTR gene
into airway epithelia. While early attempts towards
CFTR replacement led to inadequate gene transmission
and immune responses upon repeated administration
[160], technology in this area has continued to advance.
Repeated nebulization of plasmid DNA and liposome
complex [161] in a double-blind study showed modest
stabilization of lung function when the test group
was compared to the control after one year. Adverse
events were noted in both study cohorts, with more
serious effects observed after plasmid treatment. Gene
transfer approaches such as these, as well as newer viral
delivery vehicles, represent important areas for future
investigation.

More successful methods that aim to treat
the underlying genetic cause of cystic fibrosis act
on the mutant protein directly. One example is
the combination of lumacaftor and ivacaftor, two
molecules that target the classic D508 variant [159].
Lumacaftor is an agent known as a ‘corrector’; it has
been shown to partially ‘correct’ misprocessing of the
F508del mutant, increasing its presence at the cell
surface [162]. This alone does not lead to significant
effects on disease severity, but in combination with
ivacaftor, an FDA approved ‘potentiator’ (activator of
ion channel gating), significant clinical benefit has been
demonstrated among F508del/F508del homozygous
individuals. Ivacaftor acts to increase the probability
that the CFTR channel is open, allowing for chloride and
bicarbonate movement and proper function [163]. The
drug combination (ivacaftor together with lumacaftor)
led to improvement of FEV_ in patients homozygous
for the F508del mutation, representing a significant
breakthrough (applicable to ~40% of individuals with
CF [164]. Ivacaftor as a single drug has also shown
robust benefit among numerous partial function CFTR
mutations, for which the compound is FDA approved.

Strategic antibiotic regimens are commonly used
to control infection of CF airways, although resistance
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has become an increasing issue. A large subset of
these target P. aeruginosa. Nebulized antibiotics
including tobramycin, colistin and others are routinely
administered and reach high concentrations in
lower trachea and upper airways; penetration to the
most distal airways may be insufficient [165-169]. In
comparison, when antibiotics are given intravenously
or orally, drugs are delivered to the deep respiratory
tract via the pulmonary circulation, but may be
inadequately transferred to sputum, due partly to
CFTR-mediated secretory and mucus viscosity issues
[170]. The combination of both routes is essential
since P. aeruginosa is established throughout the lung.
[29,171,172]. Development of resistance is common;
P. aeruginosa (and other bacteria such as BCC) adapt
through formation of biofilms, compounding issues
related to chronic infection [173].

Dispersal of thick bacterial biofilms is an important
step towards treating CF lung infection, since antibiotics
are far more efficacious (by 10-100-fold) against
planktonic (free-living) P. aeruginosa. Biofilms that
arise after the AmucA mutation are inherently resistant
to antibiotics and phagocytic neutrophils [174,175].
One experimental treatment that has been tested in
vitro and in vivo (mouse chronic infection model) uses
acidified nitrite (NO,) administration at pH 6.5 [176].
The acidic pH reflects that of CF lungs, and bacterial
killing is pH dependent. Formation of HNO, and NO
through this approach may enhance NO associated
with anaerobic respiration of the organism in adherent
CF mucus. Antibiotic resistant strains were found to
be highly sensitive to HNO,, indicating importance of
further studies in this area.

A vitally important treatment for CF involves lung
transplantation. Infants and toddlers with CF comprise
a minority of healthy lung recipients [177]. Liou, et al.
used retrospective data to show that pediatric patients
may benefit less from the intervention [178], whereas
other studies have disputed these findings [179].

Therapeutics for COPD

Since nearly all the lung damage that occurs in COPD
cannot be reversed once it occurs, the primary goal
is disease prevention. Treatment strives to minimize
respiratory symptoms and complications, maintain
lung function, and preserve quality of life. Management
can be achieved through pharmacological or non-
pharmacological means.

Multiple drug classes are utilized as interventions
for COPD. Short acting beta agonists (SABA) represent
the initial and most frequently used medications
applied for wheezing or breathlessness. These drugs
bind to the B-adrenergic receptor, stimulating smooth
muscle cell relaxation and airway dilation. Long acting
anticholinergics comprise a mainstay of chronic
maintenance treatment for COPD, and mitigate many
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COPD symptoms, including airflow limitation and
dynamic hyperinflation, acute COPD exacerbations,
and lung function deterioration [180-182]. Long acting
beta agonists may be used alone or in combination with
long acting anticholinergics. A third class of medication
is inhaled corticosteroids (ICS). ICS are recommended
when FEV is lower than 50% among patients who have
had two or more exacerbations in the prior year. ICS
may be administered in combination with long acting
beta agonists and long acting anticholinergics. This triad
of drugs may improve lung function but does not reduce
exacerbations when compared to other modalities
[183]. Approximately 70% of COPD patients receive ICS,
but only 10% may actually qualify according to current
guidelines [184]. Phosphodiesterase (PDE) inhibitors
block breakdown of signaling molecules (such as cAMP
and cGMP). This process reduces inflammation and
stimulates bronchodilation. Roflumilast reduces the
number of exacerbations in patients with severe COPD-
associated bronchitis and recurring exacerbations [185].

As with CF, pharmacological treatments utilized in
COPD also include mucolytics and antibiotics. Mucolytics
cleave respiratory secretions and have been reported to
improve overall quality of life [186]. Cleaved mucusis more
readily mobilized from lungs with damaged cilia. Improved
clearance reduces ability of bacteria to bind to the airway
epithelial surface and promotes neutrophil activity, which
helps quell the exuberant immune response in COPD.
Despite its beneficial effects in CF, rhDNase is detrimental
in individuals with COPD and reduces lung function and
increases exacerbations [187]. Other mucoactive agents
such as normal mannitol, saline, and hypertonic saline
may cause transient bronchospasm, cough, and dyspnea
upon initiation but may have slight beneficial clinical
and physiologic effects [187]. Because exacerbations are
frequently triggered by bacterial infection, antibiotics
are often used in a manner similar to that described
for CF. Chronic macrolide use reduces the likelihood of
COPD exacerbation, an effect believed to be mediated by
macrolide anti-inflammatory properties, rather than its
antibacterial effects. Importantly, prolonged use of either
erythromycin or azithromycin may lead to the selection
of resistant organisms [188].

A critical, non-pharmacological treatment modality for
COPD involves smoking cessation. Nicotine replacement
is commonly used; other smoking cessation medications
include bupropion and partial nicotinic receptor agonists
such as varenicline. Promising reductions in smoking
have been achieved with varenicline. Finally, treatments
that prolong life in individuals with COPD include
supplemental oxygen in the setting of resting hypoxemia,
vaccinations, pulmonary rehabilitation, and lung volume
reduction procedures [189].

Closing Remarks

Chronic respiratory diseases including COPD and CF
are the third leading cause of death in the United States

Fenker et al. Int J Respir Pulm Med 2018, 5:098

currently. Both disorders provoke similar respiratory
symptoms and can lead to respiratory insufficiency and
death. Common morbidities include bacterial infections
caused by similar bacteria; common pathophysiologic
processes include mucostasis and abnormalities of the
innate immune system. Further research is needed
to achieve the goal of managing these disorders and
ultimately prolonging lives of both patient populations.
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