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Abstract
Cystic fibrosis (CF) and chronic obstructive pulmonary disease 
(COPD) are chronic pulmonary diseases that affect ~70,000 
and 251 million individuals worldwide, respectively. Although 
these two diseases have distinctly different pathophysiologies, 
both cause chronic respiratory insufficiency that erodes quality 
of life and causes significant morbidity and eventually death. 
In both CF and COPD, the respiratory microbiome plays a 
major contributing role in disease progression and morbidity. 
Pulmonary pathogens can differ dramatically during various 
stages of each disease and frequently cause acute worsening 
of lung function due to disease exacerbation. Despite some 
similarities, outcome and timing/type of exacerbation can also 
be quite different between CF and COPD. Given these clinical 
distinctions, both patients and physicians should be aware 
of emerging therapeutic options currently being offered or in 
development for the treatment of lung infections in individuals 
with CF and COPD. Although interventions are available that 
prolong life and mitigate morbidity, neither disorder is curable. 
Both acute and chronic pulmonary infections contribute to an 
inexorable downward course and may trigger exacerbations, 
culminating in loss of lung function or respiratory failure. 
Knowledge of the pulmonary pathogens causing these 
infections, their clinical presentation, consequences, and 
management are, therefore, critical. In this review, we compare 
and contrast CF and COPD, including underlying causes, 
general outcomes, features of the lung microbiome, and 
potential treatment strategies.
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Clinical Perspective
CF is a lethal recessive autosomal disorder observed 

predominately among Caucasians [1]. The disease is 
caused by mutation of the cystic fibrosis transmembrane 
conductance regulator (CFTR), a protein expressed in 
many epithelia (Figure 1). By far the greatest negative 
consequence of CF is progressively deteriorating lung 
function. Loss of CFTR causes complications that also 
include pancreatitis, hepatic injury, nasal polyposis, 
digital clubbing, meconium ileus, and other intestinal 
obstructive symptoms [2]. An important activity of CFTR 
is to regulate anion (e.g. chloride (Cl-) and bicarbonate 
(HCO3-)) secretion and absorption in epithelial tissues 
[3]. Without this cellular activity, imbalance of exocrine 
secretion and composition leads to hyperviscous mucus 
in numerous secretory organs [4].

CF typically causes pulmonary symptoms that 
include chronic cough and sputum production, airway 
obstruction, wheezing and air trapping, and persistent 
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Figure 1: Loss of CFTR drives defective mucociliary transport in cystic fibrosis. (A) Normal mucus formation is dependent 
upon chloride, fluid, bicarbonate and pH homeostasis, which is in part maintained via CFTR activity; (B) The submucosal 
glands in lung tissues produce secretions that enable effective transport of mucus by ciliary beating of airway epithelial cells. 
In contrast, depletion of CFTR mediated fluid and electrolyte transport; (C) Alters periciliary fluid composition and is associated 
with enhanced potential difference attributable to ENaC mediated Na+ transport. The surface epithelium and submucosal gland 
abnormalities confer a surface liquid and mucus environment of lower pH, diminished surface liquid depth, and increasing 
mucous viscosity; (D) Combination of depleted ASL volume and fluidity, coupled with changes in ion balance, allow for the 
proliferation and reduced clearance of bacteria such as Pseudomonas aeruginosa.
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Figure 2: CF Chest X-ray and predicted FEV1 measurements over time.
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weight loss and skeletal muscle issues [14]. Until 
recently, airflow limitation, a reduction in the exhalation 
of air due to increased airway resistance and dynamic 
airway collapse has been an essential element for the 
diagnosis of COPD. Airflow limitation is quantified by 
the ratio of FEV1 (forced expiratory volume in 1 sec) to 
FVC (forced vital capacity) and is present when this ratio 
is less than a threshold value. Typical threshold values 
are an absolute value of 0.7 or the lower limit of normal 
(LLN). The LLN represents the 5th percentile of the 
distribution of the FEV1/FVC ratio in nonsmokers with 
no lung disease. Recent investigations show that some 
individuals with radiographic evidence of emphysema 
may not have physiologic evidence of airflow limitation 
[15]. COPD is commonly viewed as two processes, 
chronic bronchitis and emphysema, with overlapping 
clinical, radiographic, and physiologic findings (please 
refer to Figure 3, Figure 4 and Figure 5 for examples).

There may be a connection between COPD-
bronchiectasis as a subtype of COPD, but this notion 
remains unclear. Thus, at this time, it is premature to 
classify COPD-bronchiectasis as a subtype of COPD 
and therefore comparison between CF and COPD-
bronchiectasis lacks merit. The only paper that comes 
remotely close to such a posit is by Blasi, et al. [16]. 
Still, epidemiologic studies of COPD implicate multiple 
etiologic risk factors including allergies and hyper-
responsiveness to airborne particulates, as well as 
recurrent bronchopulmonary infections [17]. But by 
far, the single most deleterious cause is long-term 
exposure to tobacco smoke. In 2011, the prevalence 
of COPD among US adults was 5.2% for men and 6.7% 

colonization/infection by a myriad of microorganisms 
(6). Bacteria involved in such infections include 
Staphylococcus aureus, Pseudomonas aeruginosa, and 
Burkholderia cepacia. Others, such as Haemophilus 
influenzae, Klebsiella pneumoniae, Stenotrophomonas 
maltophilia, Achromobacter xylosoxidans, and non-
tuberculous mycobacteria are increasingly recognized 
as important CF pathogens [5,6].

Nearly 2,000 mutations in CFTR have been 
documented, many of which are associated with clinical 
disease (CFTR2 database at cff.org). The most common 
mutation is Δ508. The phenylalanine at position 508 of 
the protein [7] is situated in the first CFTR nucleotide 
binding domain (NBD) and serves to both stabilize the 
overall NBD and allow proper interactions between 
NBD1 and downstream CFTR elements such as cytosolic 
loop 4 [8]. The Δ508 mutation leads to a protein 
that functions as an ion channel but is not trafficked 
efficiently to the cell surface and exhibits diminished 
half-life in the plasma membrane. The Δ508 protein also 
exhibits defective channel gating function [9]. Unlike 
normal airways, abnormalities of exocrine secretion 
lead to hyperviscous mucus, which adheres to the 
airway surface and apical membranes of numerous 
epithelia (an example of which is depicted in Figure 2). 
In airway glands, abnormalities prevent detachment 
of mucus strands from glandular ostea, compounding 
mucus viscosity and hindering clearance. Because 
mucociliary activity represents an essential component 
of airway defense against infection, the lungs become 
highly susceptible to bacterial colonization [10].

The lifespan of patients with CF has dramatically 
increased due to new therapeutic interventions and 
improved understanding of the disease (www.cff.org). 
In particular, median life expectancy in 1985 was < 25 
years, and by 2017 had reached > 40 years. Despite 
these advances, morbidity and mortality attributable 
to respiratory infection remain prevalent. An enduring 
priority to increase the survival of individuals with 
CF has been the exploration of new and innovative 
antimicrobial, anti-infective, mucolytic, and other 
treatment strategies.

Chronic obstructive pulmonary disease
Chronic obstructive pulmonary disease (COPD) is 

an increasingly prevalent chronic disease affecting 
Americans and others worldwide, that is rapidly 
becoming a leading cause of death internationally 
[11,12]. However, unlike CF, COPD is a potentially 
preventable and non-lethal (with proper patient 
compliance) and a treatable disease that is usually 
characterized by airflow limitation, intensified lung and 
systemic inflammation, episodic exacerbations, and 
comorbidities [13]. The systemic nature of COPD is very 
different from that of CF. The manifestation of systemic 
COPD includes a variety of factors that are not limited 
to cardiovascular disease, osteoporosis, depression, 

         

Figure 3: Normal posterior anterior chest radiograph. 
Vascular markings within respiratory parenchyma attenuate 
in the lateral one third of both lungs. The diaphragms have 
a dome shaped configuration.
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the major risk factor for the development of COPD, a 
comparatively small proportion of smokers develop the 
condition. Nearly one quarter of individuals with COPD 
have no smoking history [19]. Indoor and outdoor air 
pollution, workplace aerosolized chemicals, dusts, and 
fumes, and respiratory infections including tuberculosis 
are other exposures associated with the development of 
COPD [19-21]. Genetic factors predisposing individuals 
to COPD are poorly understood.

The primary clinical manifestations of COPD are 
breathlessness, cough, and sputum production dyspnea 
[22]. Breathlessness is caused mainly by dynamic 
hyperinflation with exertion which produces air trapping 
and diminished tidal volumes. Airflow limitation may 
also contribute to shortness of breath. Cough and 
sputum production are caused by hyperplasia and 
hypertrophy of mucus producing airway epithelial cells, 
colonization of the lower airway by bacterial pathogens, 
and the eventual structural derangement of the 
airways leading to the development of bronchiectasis 
(permanent enlargement and structural alteration of 
the lower bronchi) [23].

COPD is primarily a pulmonary disorder but may 
also affect multiple other organ systems. Much of the 
initial morbidity associated with COPD is caused by 
cardiovascular and other manifestations believed to 
be mediated through systemic inflammation. Other 
associated clinical findings include musculoskeletal 

for women and 76% of those individuals with self-
identified COPD were current or former smokers [18]. 
COPD normally presents later in life after prolonged risk 
factor exposure. Although tobacco smoke inhalation is 

         

Figure 4: Chest radiograph of an individual with severe 
emphysema. Lung fields are greatly enlarged and exhibit 
paucity of vascular markings throughout. Diaphragms are 
flattened and have lost their normal dome configuration.

         

Figure 5: (A) Upper lung zone; (B) Mid lung zone; (C) Lower lung zone. Computed tomography of an individual with severe 
emphysema. Lung parenchyma is destroyed and replaced by cysts and blebs. Areas of more normal lung are compressed 
by hyperinflated emphysematous lung tissue.

https://doi.org/10.23937/2378-3516/1410098
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ylococcus aureus, Pseudomonas aeruginosa, Burkholde-
ria cepacia complex (BCC, genomovar I (B. cepacia), II 
(B. multivorans), III (B. cenocepacia), IV (B. stabilis), V 
(B. vietnamiensis), VI (B. dolosa), VII (B. ambifaria), VIII 
(B. anthina), IX (B. pyrrocinia), Burkholderia gladioli and 
Burkholderia pseudomallei. Minor pathogens include 
Achromobacter xylosoxidans, Inquilinus limosus, Ralsto-
nia sp., Pandoraea apista, Streptococcus pneumoniae, 
Stenotrophomonas maltophilia, Haemophilus influenzae 
and Bordetella bronchiseptica. In addition to the afore-
mentioned bactéria, strict anaerobes have increasingly 
been encountered and include the genera, Prevotella, 
Veillonella, Propionibacterium and Actinomyces. These 
organisms were derived from a superb microbiological 
CF assessment by Coutinho, et al. [28].

With this information in hand, we must emphasize 
that the predominant infecting organisms change with 
age; for example, S. aureus is often a major species 
during childhood. As CF patients become older, the 
opportunistic pathogen P. aeruginosa becomes more 
firmly established, eventually outgrowing most other 
species, which remain present in lesser numbers [29,30].

Patients given antimicrobial treatment focused on 
P. aeruginosa eradication may develop niches that 
other pathogens occupy, leading to a remarkably 
complicated biologic flora [31]. S. aureus, and the more 
resilient methicillin-resistant S. aureus (MRSA), are 
Gram-positive cocci that are isolated from 71% and 26% 
of CF patients, respectively. The prevalence of these 
organisms has been increasing. 

As described above, S. aureus is typically an early 
colonizer of CF lungs, likely because the organism is a 
common commensal on skin and in the respiratory tract 
of humans. Colonization occurs at an early age and is 
usually present at some level throughout the life of 
patients with the disease. Before standardized use of 
antibiotic regimens such as respiratory flucloxacillin 
and dicloxacillin [32], S. aureus was the leading cause of 
death in CF. This organism is now managed with more 
effective antimicrobials. It is important to note, however, 
that high staphylocidal activity for an antibiotic may not 
be sufficient to eradicate an infection, in part due to 
inability of cilia to properly expel viscous and infected 
mucus from the lungs of individuals with CF [33]. 

S. aureus isolates from individuals with CF have been 
shown to exhibit a distinct “small colony” morphology 
[34,35] (Figure 6). Colonies of this type have decreased 
virulence properties, produce less alpha toxin (a 
hemolytic protein), and elaborate no pigment [36]. 
This phenotype may help mask the organism from 
recognition by the immune system, thereby preventing 
clearance. In addition, small colony variants have 
increased antibiotic resistance properties, and exposure 
to aminoglycosides (e.g. gentamicin) promotes 
conversion to the phenotype. Even after selective 
pressure elicited by antibiotic treatment is removed, 

disorders (osteopenia and osteoporosis that culminate 
in fractures), diabetes, anemia of chronic inflammation, 
and psychological effects such as anxiety and depression 
due to chronic breathlessness, reduced physical 
function, and social isolation. Lung inflammation and 
its subsequent systemic dissemination in COPD has also 
been implicated as a contributor to coronary artery 
disease, congestive heart failure, obesity, endocrinologic 
dysfunction, osteoporosis, and other health issues [24].

Prevention of COPD through smoking avoidance 
or cessation is the most important element of COPD 
management. Once the disorder has been correctly 
diagnosed, management is both pharmacologic and 
nonpharmacologic. COPD is treatable but cannot be 
reversed due to chronic lung remodeling and permanent 
anatomic destruction.

COPD medication management begins with a short 
acting bronchodilator and then gradually escalates with 
the addition of long acting anticholinergics, long acting 
beta agonists, and finally inhaled corticosteroids. An-
tibiotics and systemic steroids are often used to treat 
acute COPD exacerbations due to infections. Selective 
phosphodiesterase inhibitors and macrolide antibiotics 
may be used for individuals with frequent exacerba-
tions. Not adhering to treatments is associated with a 
40% increased likelihood of hospitalization [25]. Non-
pharmacologic therapies include supplemental oxygen, 
vaccinations, lung volume reduction surgery, lung trans-
plantation, and pulmonary rehabilitation.

COPD exacerbations occur episodically throughout 
the disease course and are characterized by increased 
respiratory symptoms, especially breathlessness, 
cough, and sputum production, that are more 
pronounced than their usual day to day variation 
[26]. Similar to CF, patients with COPD exhibit chronic 
inflammation and hypersecretion of mucus that may 
become more pronounced during exacerbations [17]. 
Mucus overproduction is associated with mucosal 
gland hypertrophy, increased numbers of epithelial 
goblet cells, and damaged cilia. This excessive mucus 
and deranged mucociliary clearance mechanism may 
manifest clinically as increased and forceful coughing 
with excessive phlegm production and may contribute to 
bacterial colonization and infection of the lower airways 
that propagate a cycle of progressive inflammation and 
derangement of lung structure. Just as in CF, disease 
worsening is associated with colonization and invasion 
of respiratory tissue by bacterial pathogens.

Pathogenic bacteria in the CF lungs 
The lungs of CF patients become chronically infected 

with a myriad (potentially > 100 different genera) of bac-
teria, leading to a poorer clinical prognosis [27]. Major 
pathogens include members of non-tubercle mycobac-
teria (Mycobacterium abscessus, M. avium, M. intracel-
lulare, M. fortuitum, M. gordonae, M. kansasii), Staph-

https://doi.org/10.23937/2378-3516/1410098
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changing environment. “Hypermutable” strains are 
more common in CF lungs that are chronically infected 
compared with those that are acutely infected [51]. 
Such strains exhibit changes in proofreading and DNA 
repair, allowing for rapid development of strain to 
strain differences (potentially including mucA loss 
of function [52]. Polymorphisms observed in one 
patient sample may be restricted to that individual, 
suggesting genetic and phenotypic evolution occurs 
longitudinally after initial lung infection [51]. These 
individualized lung microbiomes can be attributed 
to the compartmentalized nature of the pulmonary 
anatomy and varying evolutionary pressures, such as 
differing concentrations of antibiotics that select for the 
more resistant organisms [53,54].

small colony morphology persists [34-37]. Antibiotic 
resistance in this setting may result from lower bacterial 
uptake of aminoglycosides and/or use of exogenous 
nucleic acids to combat the effect of antifolates [38,39].

As CF patients become older, P. aeruginosa typically 
becomes more prominent despite aggressive antibiot-
ic treatment [40,41]. Resistance is due in part to ability 
of the organism to form highly antibiotic- and phago-
cyte-refractory biofilms - complex microbial communi-
ties enmeshed within the thick CF airway mucus. The 
formation of biofilms is associated with the ability to 
quorum sense (QS), a process of inter-cellular signaling 
(i.e., bacterial communication) through secreted ex-
tracellular signaling molecules that coordinate biofilm 
formation and structure [42]. P. aeruginosa is known 
to use QS during CF lung infection, including QS auto-
inducers PAI-I and PAI-2, which are detected in CF spu-
tum [43]. Bacteria in biofilms develop phenotypic dis-
tinctions compared with those bacteria associated with 
acute infections. For example, chronic organisms often 
become mucoid (alginate-overproducing), non-motile, 
non-flagellated, lipopolysaccharide-deficient, auxotrop-
hic and/or antibiotic-resistant [44,45]. From among this 
multitude of alterations, the most common and clinical-
ly devastating is mutation of the mucA gene, encoding 
an anti-sigma factor that binds AlgT(U), a transcription-
al regulator involved in production of alginate and the 
process of mucoid conversion. The mucoid phenotype 
is characterized by overproduction of highly viscous al-
ginate expolysaccharide and represents an important 
step during establishment of chronic and fatal CF lung 
infections [46-49]. The switch or trigger for a mucoid 
phenotype has been associated with steep oxygen gra-
dients within the thick airway CF mucus [50] (Figure 7).

During chronic infection, high bacterial mutation 
rates facilitate P. aeruginosa adaptation to an ever-

         

Figure 6: (A) Normal S. aureus; (B) S. aureus with small colony phenotype. With permission from [190]. Permissions from 
Copyright Clearance Center - Rightslink, order number: 4336070213221.

         

Figure 7: Phenotypes of two distinct P. aeruginosa CF 
isolates (383 and 2192) on L agar media. The strains were 
obtained 2 days apart from the same CF patient, and are 
otherwise isogenic [191]. The genome of strain 2192 has 
been sequenced [192], from [193].

https://doi.org/10.23937/2378-3516/1410098
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parainfluenza virus, influenza virus, RSV, and rhinovirus.

Predominant COPD pathogens.
M. catarrhalis and S. pneumoniae are two pf the most 

frequent species commonly cultured from the lungs 
of individuals with COPD, although their prevalence is 
less than in CF. A gallery of similar pathogens is found 
in COPD compared with CF, although the dominant 
organisms are different. Non-typable H. influenzae 
(NTHi) is the most common infectious bacterium 
observed in COPD and colonizes 60% of COPD patients 
[23,74-79]. During acute exacerbations, NTHi is the 
most likely bacterium to be found in the airway [74-78]. 
Since NTHi is cultured from individuals with stable COPD 
as well as during exacerbations, it has been suggested 
that these bacteria stimulate an inflammatory response 
in both clinical scenarios, and exacerbations tend to 
be more severe when NTHi is present. In addition, 
acquisition of new strains of NTHi increase the risk of 
frequent exacerbations [80-82]. NTHi has the ability to 
avoid clearance from the lungs contributing to its status 
as a refractory pathogen. The organism uses outer 
membrane proteins P2 and P5 to facilitate bacterial 
binding to respiratory mucus by lipooligosaccharide 
(LOS), a low molecular weight version of the more typical 
bacterial LPS. This pathogenic mechanism causes ciliary 
dysfunction, diminishing mucus clearance [83,84]. To 
further defend itself during infection, NTHi also secretes 
IgA proteases that bind and degrade IgA (the major 
antibody in mucosal secretions), reducing levels of IgA 
in the airway lumen, and, thereby, decreasing the ability 
to clear the organism. This adaptation not only allows 
NTHi to flourish, but also promotes growth and airway 
colonization of other pathogens, leading to complex 
infections that are difficult to eradicate. The same 
interactions have been reported after NTHi infection in 
CF lungs [85,86].

It is interesting to note that M. catarrhalis, a gram-
negative diplococcus and commensal organism in the 
upper respiratory tract of humans was not initially 
deemed a pathogen in COPD. This bacterium was 
isolated frequently from the sputum of COPD patients, 
but its pathogenic capacity was not recognized until 
the early 1990’s [87-89]. Since then, the organism has 
been established as a major cause of lung infections 
in COPD and a leading cause of exacerbations [90-93]. 
By adhering to epithelial cell surfaces, M. catarrhalis is 
able to persist in the lungs and elicit chronic infection. 
This propensity is stimulated by host immune defensins 
[94]. With a robust immune response, M. catarrhalis is 
stimulated to adhere to the cell surface, mediated by 
UspA, which binds to carcinoembryonic antigen-related 
cell adhesion molecules at the epithelial cell plasma 
membrane [95]. This interaction further promotes an 
airway inflammatory response. Along with the ability 
to adhere, ~90 percent of M. catarrhalis strains found 
in the lower respiratory tract resist complement-

B. cepacia represents another clinically important 
pathogen in CF lung disease. This organism, formerly 
termed Pseudomonas cepacia, has been recategorized 
as B. cepacia complex (BCC), a group of at least 20 
genetically distinct, but phenotypically similar bacteria 
[55-57]. Members of BCC are gram-negative, catalase 
positive, obligate aerobic bacilli that can persist in the 
presence of certain disinfectants and readily survive with 
minimal nutrition. Infection with BCC, first recognized in 
the CF patient population in the late 1970s, has been 
associated with severe worsening of CF pulmonary 
reserve and poor clinical prognosis [58-60]. Similar to 
P. aeruginosa, BCC has the ability to form biofilms in 
vivo, potentially impacting antibiotic resistance [61,62]. 
Although formation of BCC biofilms may help establish 
initial infection, in contrast to P. aeruginosa, there is 
an inverse relationship between exopolysaccharide 
production and decline of CF pulmonary reserve. This 
difference may be due in part to an increased surface 
expression of virulence factors by nonmucoid BCC strains 
[63]. The switch to mucoidy in BCC has been attributed 
to a more metabolically dormant and less aggressive 
phenotype. Overall, however, BCC infection confers a 
poor prognosis [64-67], and BCC has been suggested to 
outcompete P. aeruginosa in CF lungs. This advantage 
may be due to a primary siderophore, ornibactin, that is 
far more effective at obtaining iron from the host than 
the two primary P. aeruginosa siderophores, pyoverdine 
and pyochelin [68].

Other pathogens, including H. influenzae and S. 
maltophilia, are also frequent CF lung colonizers, with 
prevalence rates of 15.5 and 13.6%, respectively. H. 
influenzae, a gram-negative coccobacillus, is sometimes 
the earliest infectious organism recovered from very 
young CF patients, and causes chronic inflammation 
similar to P. aeruginosa [69,70]. It has been suggested 
that infection by H. influenzae (and consequent 
inflammation) early in life might increase susceptibility 
to infection by P. aeruginosa [71]. The prevalence of S. 
maltophila, a gram-negative bacillus, appears to have 
increased due to use of anti-pseudomonal drugs [72]. 
These bacteria are emblematic of a pathogenically 
significant microbiome that includes many organisms of 
unknown pathogenic significance. As certain niches are 
emptied over the course of a CF patient’s lifetime, new 
bacteria adapt to inhabit these microenvironments. 

Bacterial/Viral infections in COPD
Similar to CF, the lungs of individuals with COPD are 

chronically infected yet with many similarities and dif-
ferences. Although S. pneumoniae, Haemophilus influ-
enzae and Moraxella catarrhalis are the predominant 
pathogens, others that have been identified include My-
coplasma pneumoniae, P. aeruginosa, Citrobacter freun-
dii, S. aureus, Enterobacter cloacae, Stenotrophomonas 
maltophilia, Klebsiella pneumoniae, Proteus mirabilis, 
and Serratia marcescens [73]. Viruses identified include 

https://doi.org/10.23937/2378-3516/1410098
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of respiratory impairment [109-112] and is isolated in 6% 
of acute COPD exacerbations. An increased prevalence 
of multi-drug resistant strains is observed in critically-
ill patients [110,111,113]. Exacerbations can be most 
readily attributed to P. aeruginosa during acquisition of a 
new strain which elicits an exuberant immune response 
[114]. The immune system responds by stimulating 
additional virulence factors from the P. aeruginosa as 
well as further inflammation. Moreover, the presence of 
the mucoid phenotype may be observed in this setting, 
and, just as in CF, these mucoid strains persist in the lungs 
as biofilms (Figure 8), while non-mucoid strains may not. 
The mucoid P. aeruginosa phenotype less common in 
COPD compared with CF, and the estimated prevalence’s 
are 8% and 48%, respectively [115].

Innate Immune System

Innate immune dysfunction in CF 
The biochemical and cellular derangements of CF 

produce innate immune system dysfunction. A nor-
mal component of innate lung defense is mechanical 
clearance of airway secretions by cilia on the epithelial 
cell surface [116-118]. Viscous mucus has several ma-
jor consequences in the airway. First, as noted above, 
mucus compresses cilia against the cellular surface, and 
inhibits proper ciliary activity. Second, due to an already 
decreased clearance capacity, mucus directly interacts 
with the epithelial cell membrane. Over time, concen-
trated mucins directly anneal to the epithelial layer, and 
cannot be cleared by the cilia or by natural mechani-
cal disruption (e.g. coughing or chest physical therapy) 
[119]. These factors contribute to the characteristic mu-
cus stasis and inflammation in the CF lungs A build-up 
of impacted mucus often begins at birth and continues 
throughout life in individuals with CF [120,121]. If it is 
not cleared, mucus forms an ideal niche that permits 
colonization by opportunistic microorganisms. Mucus 
plaque formation provides a surface on which bacte-
ria adhere and form biofilms, which further increases 

mediated killing by the immune system by virtue of a 
disulfide bond formation system that helps stabilize 
the lipopolysaccharide resisting complement attack 
[96,97]. Despite this survival mechanism, the organism 
remains susceptible to most antibiotics used to treat 
respiratory tract infection. An exception is resistance 
to trimethoprim and ß-lactams, which occurs through 
naturally insensitive dihydrofolate reductase enzymes 
and the production of a ß-lactamase [98-101].

Another common pathogen in COPD lungs is 
the gram-positive coccus, S. pneumoniae, typically 
found in the respiratory tract during both periods 
of both stability and exacerbation. As many COPD 
exacerbations are associated with bacterial lung 
infections, patients with sputum cultures revealing S. 
pneumoniae are not infrequently placed empirically on 
antibiotics stimulating a higher prevalence of antibiotic 
resistance among pneumococcal species [102]. S. 
pneumoniae is known to cause both exacerbations and 
an increased risk for pneumonia in patients with COPD 
[103,104]. Acute exacerbation is elicited by bacterial 
virulence factors and the immune response to new 
infection. An important virulence factor in this setting 
is the polysaccharide capsule that mediates evasion 
from immune clearance. Capsular features may be 
helpful in identifying pathogenic potential of various 
pneumococcal species [105].

The presence of S. pneumoniae confers a higher 
risk of exacerbation in COPD, but interestingly only 
when cultured in the absence of other pathogens. In 
mixed culture, the risk of exacerbation does not appear 
to be elevated, which suggests that singular culture 
represents a more virulent species [106]. Pneumococcal 
vaccines help reduce invasive infections caused by the 
many prevalent S. pneumoniae serotypes by inducing 
an adaptive immune response [107,108].

Although P. aeruginosa causes chronic respiratory 
infection in COPD, it occurs much less frequently than in 
CF. Still the organism is associated with considerable levels 

         

Figure 8: A. L-agar plate of mucoid P. aeruginosa derived from a chronically infected COPD patient. B. Confocal laser 
scanning micrograph of sputum from the same patient with live (green)/dead (red) staining.
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biofilms are established, which may allow changes in 
the bacterial phenotype, including mucoid conversion 
of P. aeruginosa [133-135]. Ineffective attempts at 
bacterial killing by neutrophils increase DNA deposition 
associated with neutrophil extracellular traps (NETs), 
which further contribute to mucus viscosity. Not only 
is the ability of neutrophils to phagocytose bacteria 
compromised, but steep oxygen gradients established 
by pathogens in airway secretions significantly impact 
generation of microbicidal reactive oxygen species 
(ROS) [135]. Without ROS (or reactive nitrogen species), 
neutrophil function is substantially compromised. 

Innate immune dysfunction in COPD 
Unlike CF airway, disease cigarette smoking is the major 

etiologic factor contributing to the development of COPD 
and this exposure elicits multiple innate immune system 
derangements (Figure 10). Cigarette smoke (CS) directly 
impairs mucociliary clearance [136], including both ciliary 
shortening and physiologic function [137-139]. Direct cell 
death from CS exposure also leads to re-epithelialization 
that is dominated by goblet cells, a cellular compartment 
associated with mucus production [140,141]. Shortened 
cilia after CS exposure are associated with histone 
deacetylase 6-mediated selective auto phagocytosis and 
further degradation of cilia [136]. Chronic reduction in 
mucociliary clearance promotes susceptibility to bacterial 
infection in patients with COPD, just as in CF. 

plaque surface exopolysaccharide content, establishing 
a cyclical process of bacterial adherence, biofilm forma-
tion, and mucus plaque accumulation (Figure 9).

A second underlying problem with immune respon-
siveness in CF patients is the abnormal degradation and 
cell trafficking of Toll-like Receptor 4 (TLR4). Normally, 
TLR4 receptor is present within the Golgi [122,123] and 
may migrate to the cell surface and bind LPS as part of a 
receptor complex that assembles on lipid rafts and acti-
vates NF-KB and MAPK pathways [124,125]. Subsequent-
ly, the receptor is ubiquitinated and becomes associated 
with endosomes, where it activates INFR3 [122,126,127]. 
These events contribute to the degradation of TLR4, and 
even subtle changes in this mechanism can perturb the 
immune response [122,128-130]. Abnormal trafficking of 
TLR4 leads to increased LPS-induced activation involving 
multiple components of immune activity, including NF-
KB, MAPK signaling, and IFN regulatory factor-3 (IFNR3) 
[131]. Along with increased immunological responsive-
ness, these events may decrease TLR4 degradation, 
which further disrupts airway defense. Macrophages 
from CF patients may be hyper-responsive to bacterial 
LPS [132], due, in part, to abnormal TLR4 trafficking [132].

CF also dramatically affects function and accumulation 
of phagocytes in lung tissues [133]. Neutrophils, which 
accumulate to nearly 1500-fold above their normal 
levels, have impaired migration through the mucus 
in an attempt to clear bacteria before refractory 

         

Figure 9: Biofilms promote bacterial persistence during treatment. Planktonic bacteria can be cleared by antibiotics, 
antibodies, or host human cells. Once a biofilm has formed, these elements may become less effective. Enzymes utilized 
as part of phagocytosis build up within host cells and elicit cell damage and increased inflammation. If bacteria return 
to planktonic form, the immune system and antibiotics are able to more effectively address infection. Permissions from 
Copyright Clearance Center - Rightslink, order number: 4336070663094.

https://doi.org/10.23937/2378-3516/1410098
file:///I:/Clinmed/Articles/IJRPM/Volume%205/Vol%205.2/IJRPM_Ai/javascript:popUp('viewprintablelicensefrommyorders.jsp?ref=5c47fcb6-515d-4976-aadf-c0b747b5649a')


ISSN: 2378-3516DOI: 10.23937/2378-3516/1410098

Fenker et al. Int J Respir Pulm Med 2018, 5:098 • Page 10 of 18 •

fundamental physiologic abnormalities caused by 
mutation of CFTR. Symptomatic or palliative treatments, 
for example, include compensation for pancreatic 
insufficiency with supplemental pancreatic enzymes, 
high calorie diets with inclusion of fat-soluble vitamins, 
and anti-inflammatory agents to slow progression of 
respiratory function decline. General interventions for 
lung disease also encompass chest physical therapy and 
inhaled treatments to improve mucus clearance, together 
with antibiotic therapy for infection control [149].

Failure of mucus clearance is a hallmark of CF 
pathogenesis, and a number of treatments have been 
developed to overcome this defect. Mechanical devices 
and patient compliant actions (chest physical therapy, 
aerobic exercise, etc.) increase mucus mobilization, and 
are part of standard CF clinical care. Treatments include 
use of active cycle breathing techniques and autogenic 
drainage, a breathing technique used to mobilize mucus 
up the airway, where it can be more easily cleared by 
coughing. Positive expiratory pressure masks and high 
frequency chest wall oscillation can aid in this process 
[150,151]. Prescription of these methods is typically 
provided on an individualized basis, as there is no 
evidence that one technique works more effectively in 
all cases [152]. Furthermore, it is not established that 
use of airway clearing techniques is beneficial in the 
early stages of CF, when there may be little sign of lung 
impairment, and build-up of mucus is less pronounced. 
That being said, recent treatment guidelines often 
recommend daily airway clearance and aerobic exercise 
to help improve mucus clearance as a means to improve 
patient health [153].

CS also affects resident immune cells of the lung. These 
effects include increased numbers of alveolar macrophages 
and reduced ability to clear apoptotic cells and bacterial 
infections, due to impaired monocyte differentiation and 
lowered expression of surface recognition molecules 
[142,143]. CS also increases expression of pro-inflammatory 
chemokines and matrix metalloproteases, which suggest a 
change in macrophage chemokine phenotype [144,145]. 
Neutrophil ROS production regulates the phagocytic 
respiratory burst, and phagocytosis impairment during 
differentiation is another factor contributing to reduced 
bacterial clearance in COPD [146]. Failure of neutrophil 
function is compounded by reduced antimicrobial capacity 
of macrophage apoptosis. The polymorphonuclear cell 
derangements in COPD may also increase extravasation 
of lysozymes and granules into the extracellular space, 
contributing to pulmonary structural damage [147].

Activity of natural killer (NK) cells, which normally 
contribute to eradication of viral pathogens, is increased 
by CS. Elevated expression of epithelial cell surface 
ligands is associated with CS exposure and stimulates 
the NK cell by binding to the NKG2D receptor. These 
activated NK cells may promote airway epithelial cell 
apoptosis and tissue damage due to dysregulated 
inflammation [148].

Novel Treatment Strategies

Treatment of CF and removal of biofilms
Key aspects of CF treatment have traditionally focused 

on addressing symptoms of the disease, but more recently 
have included interventions directed towards correcting 
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has become an increasing issue. A large subset of 
these target P. aeruginosa. Nebulized antibiotics 
including tobramycin, colistin and others are routinely 
administered and reach high concentrations in 
lower trachea and upper airways; penetration to the 
most distal airways may be insufficient [165-169]. In 
comparison, when antibiotics are given intravenously 
or orally, drugs are delivered to the deep respiratory 
tract via the pulmonary circulation, but may be 
inadequately transferred to sputum, due partly to 
CFTR-mediated secretory and mucus viscosity issues 
[170]. The combination of both routes is essential 
since P. aeruginosa is established throughout the lung. 
[29,171,172]. Development of resistance is common; 
P. aeruginosa (and other bacteria such as BCC) adapt 
through formation of biofilms, compounding issues 
related to chronic infection [173].

Dispersal of thick bacterial biofilms is an important 
step towards treating CF lung infection, since antibiotics 
are far more efficacious (by 10-100-fold) against 
planktonic (free-living) P. aeruginosa. Biofilms that 
arise after the ∆mucA mutation are inherently resistant 
to antibiotics and phagocytic neutrophils [174,175]. 
One experimental treatment that has been tested in 
vitro and in vivo (mouse chronic infection model) uses 
acidified nitrite (NO2

-) administration at pH 6.5 [176]. 
The acidic pH reflects that of CF lungs, and bacterial 
killing is pH dependent. Formation of HNO2 and NO 
through this approach may enhance NO associated 
with anaerobic respiration of the organism in adherent 
CF mucus. Antibiotic resistant strains were found to 
be highly sensitive to HNO2, indicating importance of 
further studies in this area. 

A vitally important treatment for CF involves lung 
transplantation. Infants and toddlers with CF comprise 
a minority of healthy lung recipients [177]. Liou, et al. 
used retrospective data to show that pediatric patients 
may benefit less from the intervention [178], whereas 
other studies have disputed these findings [179].

Therapeutics for COPD 
Since nearly all the lung damage that occurs in COPD 

cannot be reversed once it occurs, the primary goal 
is disease prevention. Treatment strives to minimize 
respiratory symptoms and complications, maintain 
lung function, and preserve quality of life. Management 
can be achieved through pharmacological or non-
pharmacological means. 

Multiple drug classes are utilized as interventions 
for COPD. Short acting beta agonists (SABA) represent 
the initial and most frequently used medications 
applied for wheezing or breathlessness. These drugs 
bind to the β-adrenergic receptor, stimulating smooth 
muscle cell relaxation and airway dilation. Long acting 
anticholinergics comprise a mainstay of chronic 
maintenance treatment for COPD, and mitigate many 

Mucolytic compounds are used to breakdown 
excess mucus lining the airways. In addition to 
airway secretions, themselves, DNA from neutrophil 
extracellular traps contributes significantly to increased 
CF sputum viscosity. Use of recombinant human DNase, 
such as dornase alfa, can be used to decrease viscosity 
and augment lung function [154,155]. Another useful 
mechanism is increased hydration of airway secretions. 
Inhaled agents such as hypertonic saline (7%) stimulate 
movement of vascular water into thick airway 
secretions, helping cilia mobilize sputum and promote 
cough-mediated clearance [156-158]. 

Newer modes of treatment aim to target basic 
genetic defects responsible for CF [159]. One such 
technique is to bypass or repair DNA and/or mRNA 
encoding mutant CFTR protein. Approaches using viral 
vectors - e.g. adeno-, adeno-associated, or retro-viruses 
- were used to insert functioning copies of the CFTR gene 
into airway epithelia. While early attempts towards 
CFTR replacement led to inadequate gene transmission 
and immune responses upon repeated administration 
[160], technology in this area has continued to advance. 
Repeated nebulization of plasmid DNA and liposome 
complex [161] in a double-blind study showed modest 
stabilization of lung function when the test group 
was compared to the control after one year. Adverse 
events were noted in both study cohorts, with more 
serious effects observed after plasmid treatment. Gene 
transfer approaches such as these, as well as newer viral 
delivery vehicles, represent important areas for future 
investigation. 

More successful methods that aim to treat 
the underlying genetic cause of cystic fibrosis act 
on the mutant protein directly. One example is 
the combination of lumacaftor and ivacaftor, two 
molecules that target the classic D508 variant [159]. 
Lumacaftor is an agent known as a ‘corrector’; it has 
been shown to partially ‘correct’ misprocessing of the 
F508del mutant, increasing its presence at the cell 
surface [162]. This alone does not lead to significant 
effects on disease severity, but in combination with 
ivacaftor, an FDA approved ‘potentiator’ (activator of 
ion channel gating), significant clinical benefit has been 
demonstrated among F508del/F508del homozygous 
individuals. Ivacaftor acts to increase the probability 
that the CFTR channel is open, allowing for chloride and 
bicarbonate movement and proper function [163]. The 
drug combination (ivacaftor together with lumacaftor) 
led to improvement of FEV1 in patients homozygous 
for the F508del mutation, representing a significant 
breakthrough (applicable to ~40% of individuals with 
CF [164]. Ivacaftor as a single drug has also shown 
robust benefit among numerous partial function CFTR 
mutations, for which the compound is FDA approved. 

Strategic antibiotic regimens are commonly used 
to control infection of CF airways, although resistance 
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currently. Both disorders provoke similar respiratory 
symptoms and can lead to respiratory insufficiency and 
death. Common morbidities include bacterial infections 
caused by similar bacteria; common pathophysiologic 
processes include mucostasis and abnormalities of the 
innate immune system. Further research is needed 
to achieve the goal of managing these disorders and 
ultimately prolonging lives of both patient populations. 
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dynamic hyperinflation, acute COPD exacerbations, 
and lung function deterioration [180-182]. Long acting 
beta agonists may be used alone or in combination with 
long acting anticholinergics. A third class of medication 
is inhaled corticosteroids (ICS). ICS are recommended 
when FEV1 is lower than 50% among patients who have 
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may be administered in combination with long acting 
beta agonists and long acting anticholinergics. This triad 
of drugs may improve lung function but does not reduce 
exacerbations when compared to other modalities 
[183]. Approximately 70% of COPD patients receive ICS, 
but only 10% may actually qualify according to current 
guidelines [184]. Phosphodiesterase (PDE) inhibitors 
block breakdown of signaling molecules (such as cAMP 
and cGMP). This process reduces inflammation and 
stimulates bronchodilation. Roflumilast reduces the 
number of exacerbations in patients with severe COPD-
associated bronchitis and recurring exacerbations [185].

As with CF, pharmacological treatments utilized in 
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cleave respiratory secretions and have been reported to 
improve overall quality of life [186]. Cleaved mucus is more 
readily mobilized from lungs with damaged cilia. Improved 
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are often used in a manner similar to that described 
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antibacterial effects. Importantly, prolonged use of either 
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A critical, non-pharmacological treatment modality for 
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include bupropion and partial nicotinic receptor agonists 
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have been achieved with varenicline. Finally, treatments 
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