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Abstract

Myeloid-derived suppressor cells (MDSC) have been considered to
be key mediators of immuno-suppression in cancer. The numbers of
MDSCs increased in the blood and in the tumor microenvironment
during inflammation. Due to the strong correlation between
inflammation and cancer that results in tumor progression through
MDSCs-associated immune-suppression, it is posited that
modulating MDSCs using anti-inflammatory drugs will enhance
the activity of immunotherapy and antitumor immunity. This review
will discuss strategies using both pro-inflammatory and anti-
inflammatory agents that modulate MDCSs, with a particular focus
on potential advantages and disadvantage of some strategies. The
use of anti-inflammatory agents that suppress MDSCs activation
with pro-inflammatory agents that enhance immune responses
may provide a logical reason for using new combination therapy
in cancer.
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Introduction

It is identified that there are various immunosuppressive cells in
the tumor microenvironment including regulatory T cells (Tregs)
[1-3], N2 neutrophils [4], regulatory dendritic cells (DCs) [5], Tie2-
expressing monocytes [6], and myeloid-derived suppressor cells
(MDSCs) [7,8]. Among of those, MDSC, a heterogeneous population
of immature myeloid cells containing precursors of granulocytes,
macrophages, and immature DCs, has recently made a lot of
attention because of their key roles in creating inflammatory tumor
microenvironment.

Association of inflammation with tumor progression through
accumulation of MDSC has been resulted in inhibition of anti-tumor
immunity and facilitating tumor growth [9,10]. MDSCs are expanded
in bone marrow and recruited into the blood, lymph nodes, and
tumor microenvironment of experimental animals or patients with
cancer to inhibit both adaptive and innate immunity [9,11-14]. In
individuals with established cancer, MDSCs were introduced as a key
factor in preventing the efficacy of immunotherapies [10,15].

So far, several approaches have been suggested to modulate
MDSCs via different mechanisms including: inhibition of tumor-
derived factors, suppression of generation and/or expansion of

MDSCs from hematopoietic progenitors, differentiation of MDSCs
into mature cells, blockade of MDSC trafficking, and abrogating
immune suppressive activities of MDSCs [16-19]. Despite using
several clinical trials in patients with different tumor types, however,
the overall results of these trials are disappointing [20,21]. To
overcome immunosuppression in the tumor microenvironment and
to achieve better efficiency of cancer immunotherapy, new promising
agents that modulate MDSCs numbers or functions parallel with
increasing immune responses are needed.

Characteristic of MDSCs

MDSCs are immature myeloid cells that under chronic
inflammatory conditionsliketumormicroenvironmentacquirestrong
immunosuppressive functions that allow them to inhibit efficiently
T-cell mediated anti-tumor reactivity by various mechanisms [22-
25]. MDSCs express Grl and CD11b surface markers in mice,
whereas there is no human analog of Grl. Mouse MDSCs consist
of two major subsets: CD11b*Ly6G*Ly6C"" (granulocytic) and
CD11b"Ly6G*-Ly6C#" cells (monocytic) which showed difference
in their immunosuppressive mechanisms [12,26]. Counterparts
of mouse MDSCs in human, distinguished as CD11b*CD15* for
granulocytic and CD11b* CD14* for monocytic cells in a Lin"HLA-
DR-CD33*cells [14,18].

Immunosuppressive mechanisms of MDSCs

It is identified that both G-MDSC and M-MDSC can inhibit T
cells through different mechanisms [15,24]. A significant portion
of MDSCs abilities to suppress T cells in mouse and human
models is through i) generation of Peroxynitrite by arginase (Arg)
and inducible nitric oxide synthetase (iNOS) [27,28]. Whereas
the generation of NO and secretion of ARG-1 is mainly used by
M-MDSC, G-MDSC produced ROS mediated through the increased
activity of NADPH oxidase (NOX) 2. ii) Down-regulation of TCR
cell surface expression by decreasing CD3 (-chain biosynthesis
[29]; iii) Interfere with T-cell trafficking through expression of the
metalloproteinase domain (ADAM) 17, which decreases CD62 ligand
expression [30]. iv) Activation and expansion of Treg cells [31]; v)
Induction of anergy in NK cells through membrane bound TGE-f,
STATS5 activity, or via the NKp30 receptor [7,32]. Also MDSCs can
suppress NK cell cytotoxicity by inhibiting NKG2D and interferon-y
(IFN-y) production in models of glioma [33]. Collectively, MDSCs
can use diverse mechanisms to affect immune and non-immune cells
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and create an environment that suppressing anti-tumor immune
responses.

Inflammation, tumor and MDSC

Contribution of chronic inflammation to tumor progression
suggested by Rudolf Virchow [15,34,35]. During two last decades,
accumulating evidence has indicated that chronic inflammation
promotes tumor onset and development through different
mechanisms such as the production of reactive oxygen species
(ROS), production of vascular endothelial growth factor (VEGF)
and production of matrix metalloproteases (MMP) s, which facilitate
invasion and metastasis [34]. Additionally, different studies have
shown that pro-inflammatory cytokines IL-1p [36], IL-6 [17], GM-
CSF, and G-CSF, which are found in the microenvironment of many
tumors, significantly increase MDSC accumulation and suppress T
cell activation and function [11,37,38]. Furthermore, IL-1p induced
inflammation, which aids MDSC and macrophage cross-talk,
resulting in increasing MDSC mediated of immune suppression
[11,39].

Because of the connection between inflammation and cancer,
blocking inflaimmatory mediators regulating inflammation are
expected to be effective in reducing tumor incidence and delaying
tumor growth [7,19,40]. Different strategies target MDSCs directly
by changing their expansion, recruitment, phenotype and/or
immunosuppressive activity [13]. i) Non-steroidal anti-inflammatory
drugs (NSAIDs), Cyclooxygenase-2 (COX-2) inhibitors target the
COX-2 enzyme and suppress activation of MDSCs through CCL2,
CXCL12, or PGE2 inhibition and increase cytotoxic T lymphocytes
(CTLs) [41,42]. ii) Peroxisome proliferator-activated receptor-y
(PPARY) is an anti-inflammatory molecule expressed in the myeloid-
lineage [43]. Dominant-negative PPARYy expression in myeloid
cells reduces expansion of the CD11b*Ly6G* population [44].
iii) Phosphodiesterase-5 (PDE-5) inhibitors including: sildenafil,
tadalafil, and vardenafil are used for treatment of nonmalignant
diseases. These drugs increase infiltration of activated CTLs into
tumor and tumor-induced T cell through down-regulation of Arg,
iNOS, and IL-4a expression in MDSCs [40]. VI) Bardoxolone methyl,
also known as CDDO-Me or RTA 402, is a synthetic triterpenoid,
which has anticancer and cancer-preventive activities. It has been
shown to be a potent activator of the transcription factor NFR2,
which up-regulates several antioxidant genes resulted in abrogation
of immunosuppressive activities of MDSCs and restored immune
responses in both preclinical murine model and patients with renal
cell carcinoma [45,46]. V) Silibinin, a natural flavonoid from the
seeds of milk thistle, has been used as an anti-inflammatory agent
to reduce the toxicity of cancer chemotherapy [47]. Our findings in
an advanced tumor model of breast (4T1) showed that the decrease
in tumor growth and MDSC accumulation in the blood of silibinin-
treated tumor-bearing animals is not primarily due to a direct anti-
tumor effect on 4T1 cells or suppression of MDSC development in
bone marrow, but rather represents an indirect effect of silibinin on
T-cells in the tumor microenvironment. Also silibinin treatment
resulted in immune polarization to a M1 phenotype in the tumor
microenvironment. Our data also indicate that silibinin decreases
MDSC in a chemokine (CCR2) dependent manner that provide a
mechanism for the decreased accumulation of MDSC in the tumor
and a decrease in tumor-associated immunosuppression [48].

In contrast to anti-inflammatory mediators, there are a few reports
for effects of pro-inflammatory mediators on MDSCs. For example: i)
S100A8/A9 proteins induce MDSCs accumulation, therefore, and in
vivo blocking of S100A8/A9 binding, reduces, but does not eliminate
MDSC accumulation in tumor-bearing mice [38]. ii) Tumor necrosis
factor-a (TNF-a) blocks myeloid cell differentiation and augment
the suppressive activity of MDSCs in chronic inflammatory settings.
Administration of a TNF-a antagonist (etanercept) reduces MDSCs’
suppressive activity and promotes their maturation into dendritic
cells and macrophages [19,49]. While heightened levels of pro-
inflammatory mediators or adoptive transfer of inflammatory cells
increases tumor development [50], we have shown that iii) Poly (I:

C), a pro-inflammatory agent decreased MDSCs in both blood and
tumor, directly acting on MDSCs. Poly (I: C) stimulated MDSC
exhibited a “matured” phenotype, based on increased CD80, CD86,
and MHC II expression when compared to un-stimulated MDSC
obtained from murine spleens. Poly (I: C) in the setting of breast
cancer affects MDSC generation, differentiation and also targets
cancer cells, consequently leading to reduction of MDSC numbers
and lower MDSC suppressive function, and improving tumor-
specific T-cell functions [51].

Combination therapy and adverse effects of known
approaches

Current studies are focused on combination of MDSCs-based
approaches with different forms of immunotherapy targeting the
function and/or numbers of MDSCs as follows: i) Gemcitabine has
been shown to reduce splenic MDSC levels in tumor bearing mice
and combining gemcitabine with IFN-beta markedly enhanced anti-
tumor efficacy in a HER-2/neu tumor model [52]. ii) sunitinib therapy
in combination with low-dose radiotherapy modestly improved
survival in a mouse model of glioma [53]. Of note, combined therapy
with high dose radiation, resulted in fatal toxicities and limiting the
feasibility of this combination [21,53]. iii) Combining the TroVAax
(MVA-5T4) vaccine with sunitinib, IL-2, or IFN-a in RCC patients
(phase III trial), did not enhance survival relative to sunitinib alone
(or IL-2 or IFN-a alone) [54]. Some treatments that target MDSCs
showed pleiotropic effects on other immune system components.
Chemotherapeutic drugs that are commonly used to treat cancer not
only affect the tumor but also the immune system, having a crucial
impact on antitumor responses [55,56]. 5-fluorouracil (5-FU) is one
of chemotherapy approaches, which selectively eliminated MDSC at
low doses also showed strong negative effects on the immune system
making immunotherapy ineffective [57]. Another study showed that
treatment with CPT11 or the 5FU + CPT11 combination accumulates
MDSCs and produce elevated levels of NO and ROS that resulted in
DNA damage during colorectal cancer [58,59]. Also, using anti-Gr-1
mADb for depletion of MDSCs in mice [60,61] has been showed adverse
effect on memory CD8* T cells, y8T cells and mice plasmacytoid
dendritic cells expressing GR-1 [62-65]. Altogether, above reported
toxic effects of these approaches must be considered in the future
design of new combination therapies.

Summary

Taken together, it is mandatory to have novel strategies that target
MDSCs and boost immune responses to achieve better efficiency
of cancer immunotherapy. Given the critical role of MDSCs in
suppressing T-cell activation and proliferation and regulation of cell
mediated anti-tumor immunity, it is time to investigate the influence
of drugs with both anti- and pro-inflammatory effects on MDSCs in
the tumor microenvironment. The concept of modulation of MDSCSs
through combining of anti-inflammatory and pro-inflammatory
drugs may lead to the development of a potent anticancer therapy.
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