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Abstract
Objective: To clarify a possible role of prostatic trace elements 
in an etiology of age-dependent gland diseases such as benign 
prostatic hyperplasia and prostate cancer.

Methods: The variation with age of the 54 trace elements 
concentration in prostatic parenchyma and the relationship of these 
trace elements with basic histological structures of nonhyperplastic 
prostate glands of 65 subjects aged 21–87 years was investigated 
by an instrumental neutron activation analysis combined with 
inductively coupled plasma atomic emission spectrometry and a 
quantitative morphometric analysis.

Results: A significant trend for increase with age in Bi, Cd, Co, 
Fe, Hg, Sc, Sn, and Zn concentration as well as for increase with 
age in relative volume of stroma and decrease in relative volume of 
epithelium was found. It was demonstrated that the glandular lumen 
and, therefore, prostatic fluid is a main pool of Zn accumulation in 
the normal human prostate, for the age range 21 to 40 years. For 
age above 40 the redistribution of trace elements between prostatic 
cells and fluid begins. In this period of life stroma is the main pool 
of Al, Br, Cd, and Th accumulation in the normal human prostate.

Conclusions: For ages above 40 years conclusive evidence of 
a disturbance in prostatic trace element concentrations and their 
histological distribution was shown.
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of PCa also drastically increases with age, being three orders of 
magnitude higher for the age group 40–79 years than for those 
younger than 40 years [3,4]. There are many similarities between 
the epidemiological factors of BPH and PCa [5] but the greatest risk 
factor for both diseases is increasing age.

The human prostate gland is the only internal organ that 
continues to enlarge throughout adulthood [6,7]. Thus, it is possible 
to speculate that there are some age-dependence factors in prostate 
which disturb a balance between normal cell proliferation and 
apoptosis. An elevated level of cell proliferation promotes BPH and 
PCa development. The etiology of both BPH and PCa is believed to be 
multifactorial. Both diseases may occur due to subtle changes in male 
hormones with age as well as other factors including levels of Ca, 
Zn, and other chemical elements in prostate [8-14]. In our previous 
studies higher levels of Zn, Ca, and Mg as well as some other chemical 
elements were observed in prostate parenchyma of adult males when 
compared with nonprostatic soft tissues of the human body [15-19]. 
High accumulation of these elements suggests that they may play an 
important role in prostate function and health. Moreover, levels of 
some chemical elements were found to increase in the prostate after 
puberty and throughout adulthood, and in some cases this increase 
was shown to be androgen-dependent [20-27]. The reason for this 
increase in chemical element content in the normal prostate gland 
is not completely understood. In addition, longstanding questions 
about the main pool and the local distribution of chemical elements 
in adult and geriatric prostates still remain open [28-37].

Prostatic parenchyma contains three main components: 
glandular tissue, prostatic fluid, and fibromuscular tissue or 
stroma. Glandular tissue includes acini and ducts. Epithelial cells 
(E) surround the periphery of the acini and luminal surfaces (L) in 
acini (glandular lumina). Prostatic fluid fills the lumina in the acini. 
Stromal tissue (S) is composed of smooth muscle, connective tissue, 
fibroblasts, nerves, lymphatic and blood vessels. Thus, the volume of 
the prostate gland may be represented as a sum of volumes (E + L + 
S). This makes it possible to quantitate morphological data using a 
stereological approach [20].

Cellular alterations that include changes in the epithelium and 

Introduction
More than 70% the male population aged over sixty has clinical 

or histologic evidence of benign prostatic hyperplasia (BPH), while 
prostate cancer (PCa) is the most common male non-cutaneous 
malignancy in the Western world [1,2]. Understanding etiologies 
of both conditions is crucial to reducing the resulting burden of 
mortality and morbidity.

The prevalence of BPH rises sharply with age. The prevalence 
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After nondestructive NAA-LLR investigation the prostate 
samples were taken out from the aluminum foil and used for ICP-MS. 
The samples weighing about 50 mg were decomposed in autoclaves; 
1.5 mL of concentrated HNO3 (nitric acid at 65%, maximum (max) 
of 0.0000005% Hg; GR, ISO, Merck) and 0.3 mL of H2O2 (pure for 
analysis) were added to prostate tissue samples, placed in one-chamber 
autoclaves (Ancon-AT2, Ltd., Russia) and then heated for 3 h at 160–
200 °C. After autoclaving, they were cooled to room temperature and 
solutions from the decomposed samples were diluted with deionized 
water (up to 20 mL) and transferred to plastic measuring bottles. 
Simultaneously, the same procedure was performed in autoclaves 
without tissue samples (only HNO3+H2O2+deionized water), and the 
resultant solutions were used as control samples.

The prostate specimens intended for the morphometric study 
were transversely cut into consecutive slices, which were fixed in 
buffered formalin (pH 7.4) and embedded in paraffin wax. The 
paraffin-embedded specimens were sectioned with 5 μm thickness 
and processed using routine histological methods. All samples were 
conventionally stained with haematoxylin and eosin, and then all 
histological slides were examined by an anatomical pathologist 
to detect any focus of benign prostatic hyperplasia, carcinoma, or 
intraepithelial neoplasia, to exclude samples with artifacts and so to 
select appropriate slides for further morphometric evaluation.

Instrumentation and methods

A vertical channel of nuclear reactor was applied to determine the 
mass fractions of Ag, As, Au, Ba, Br, Cd, Ce, Co, Cr, Cs, Eu, Fe, Gd, Hf, 
Hg, La, Lu, Nd, Rb, Sb, Sc, Se, Sm, Sr, Ta, Tb, Th, U, Yb, Zn, and Zr 
by NAA-LLR. The quartz ampoule with prostate samples, standards, 
and certified reference materials was soldered, positioned in a transport 
aluminum container and exposed to a 24-hour neutron irradiation in a 
vertical channel with a neutron flux of 1.3·1013 n·cm-2·s-1. Ten days after 
irradiation samples were reweighed and repacked. The samples were 
measured for period from 10 to 30 days after irradiation. The duration 
of measurements was from 20 min to 10 hours subject to pulse counting 
rate. The gamma spectrometer included the 100 cm3 Ge(Li) detector 
and on-line computer-based MCA system. The spectrometer provided a 
resolution of 1.9 keV on the 60Co 1332 keV line.

Sample aliquots were used to determine the content of Ag, Al, 
As, Au, B, Be, Bi, Br, Cd, Ce, Co, Cr, Cs, Dy, Er, Eu, Ga, Gd, Hf, Hg, 
Ho, Ir, La, Li, Lu, Mn, Mo, Nb, Nd, Ni, Pb, Pd, Pr, Pt, Rb, Re, Sb, 
Se, Sm, Sn, Ta, Tb, Te, Th, Ti, Tl, Tm, U, Y, Yb, Zn, and Zr by ICP-
MS using an ICP-MS Thermo-Fisher “X-7” Spectrometer (Thermo 
Electron, USA). The element concentrations in aqueous solutions 
were determined by the quantitative method using multi elemental 
calibration solutions ICP-MS-68A and ICP-AM-6-A produced by 
High-Purity Standards (Charleston, SC 29423, USA). Indium was 
used as an internal standard in all measurements. If an element has 
several isotopes, the concentration of Li,, B, Ti, Ni, Zn, Br, Rb, Mo, 
Pd, Ag, Cd, Sn, Sb, Te, Nd, Sm, Eu, Gd, Dy, ER, Yb, Hf, Re, Ir, Pt, 
Hg, Tl, and Pb in a sample was calculated as the mean of the values 
measured for their different isotopes. The detection limit (DL) was 
calculated as:

DL = Ci + 3 × SD

where Ci is a mean value of the isotope content for measurements 
in control samples, and SD is a standard deviation of Ci determination 
in control samples. For elements with several isotopes, the DL 
corresponded to that of the most abundant isotope. The relative 
standard deviation (RSD) did not exceed 0.05 for elements with Ci > 5 
DL and did not exceed 0.20 for elements with Ci < 5 DL.

Details of the analytical methods and procedures used here 
such as nuclear reactions, radionuclides, gamma-energies, isotopes, 
spectrometers, spectrometer parameters and operating conditions 
were presented in our earlier publications concerning the trace 
elements of pediatric and young adult prostate gland [17,18,22,24].

Morphometric evaluations were then performed quantitatively 
using stereological method [48]. The stained tissue sections were 

stroma are implicated in the development and growth of the prostate 
gland, as well as in BPH and PCa pathogenesis [38,39]. However, the 
data on age-dependence of main histological components of normal 
prostates is extremely limited [40,41]. Moreover, some contradictory 
results were obtained in these studies.

Because of the lack of adequate quantitative data on the subject 
of chemical element distributions in human prostate and changes 
of these distributions with age, a study of as many of chemical 
elements as possible was begun by us. In our previous studies we 
investigated the chemical element distributions in pediatric and 
nonhyperplastic young adult prostate using correlations between 
elemental contents and quantitative morphological data [20,42-
44]. It should be noted that the morphological data is assessed as 
% of gland volume, thus, the results for chemical element contents 
have to be expressed as a concentration (mg/L or mg/dm3) on wet 
mass basis.

The primary purpose of present study was to determine 
reliable values for histological characteristics and trace element 
concentrations in the nonhyperplastic prostate of subjects ranging 
from young adult males to elderly persons (over 60 years old) using 
a quantitative morphometric analysis and a nondestructive neutron 
activation analysis with high resolution spectrometry of long-lived 
radionuclides (INAA-LLR) combined with inductively coupled 
plasma mass spectrometry (ICP-MS). The second aim was to compare 
the trace element concentrations and histological characteristics in 
prostate glands of age group 3 (elderly persons, who were aged 61 to 
87 years), with those of group 1 (adults aged 21 to 40 years) and group 
2 (adults aged 41 to 60 years). The final aim was to investigate the 
relationships between trace element concentrations in prostate and 
quantitative morphometric parameters of the prostate glands studied.

Material and Methods
Samples

Samples of the human prostate were obtained from randomly 
selected autopsy specimens of 65 males (European-Caucasian) aged 
21 to 87 years. Age ranges for subjects were divided into three age 
groups, with group 1, 21-40 years (30.4 ± 1.1 years, M ± SEM, n = 28), 
group 2, 41–60 years (49.6 ± 1.1 years, M ± SEM, n = 27), and group 
3, 61–87 years (68.8 ± 2.7 years, M ± SEM, n = 10). These groups 
were selected to reflect the condition of prostate in the first (group 
1) and in the second (group 2) periods of adult life, as well as in the 
old age (group 3). The available clinical data were reviewed for each 
subject. None of the subjects had a history of an intersex condition, 
endocrine disorder, neoplasm or other chronic disease that could 
affect the normal development of the prostate. None of the subjects 
were receiving medications known to affect prostate morphology or 
its chemical element content. The typical causes of death of most of 
these patients included acute illness (cardiac insufficiency, stroke, 
pulmonary artery embolism, alcohol poisoning) and trauma. All 
prostate glands were divided by an anterior-posterior cross-section 
into two portions using a titanium scalpel [45-47]. One portion was 
reviewed by an anatomical pathologist while the other was used for 
the trace element content determination. Only the posterior part of 
the prostate, including the transitional, central, and peripheral zones, 
was investigated. A histological examination was used to control 
the age norm conformity as well as to confirm the absence of any 
microadenomatosis and/or latent cancer.

Sample preparation

The samples intended for trace element analysis were weighed, 
freeze-dried and homogenized. The pounded sample weighing 
about 50 mg was used for chemical element measurement by 
nondestructive instrumental NAA-LLR. The samples for NAA-LLR 
were wrapped separately in a high-purity aluminum foil washed with 
rectified alcohol beforehand and placed in a nitric acid-washed quartz 
ampoule. Titanium or plastic tools were used in sampling and sample 
preparation for the chemical element determinations [45-47].
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coefficient between the morphometric parameters and trace element 
concentrations.

Results
Comparison of the mean values ± standard error of means (M ± 

SEM) of the trace element concentrations (mg/L or mg/dm3, on wet 
mass basis) in the nonhyperplastic prostate gland of males between 
ages 21–87 years obtained by both NAA-LLR and ICP-MS methods 
presents in table 1.

Table 2 depicts the basic statistical parameters (arithmetic mean, 
standard deviation, standard error of mean, minimal and maximal 
values, median, percentiles with 0.025 and 0.975 levels) of the 54 trace 
element concentrations (mg/L or mg/dm3, on wet mass basis) and 
the per cent volumes (% of gland volume) of the stroma, glandular 
epithelium, and glandular lumen in the nonhyperplastic prostate 
gland of males between ages 21–87 years.

Comparison of our results with published data for the 54 trace 
element concentrations [17-19,22,24,27,44,51-70] and for the 
morphometric parameters of the nonhyperplastic prostate gland of 
adult males [40,41] presents in table 3.

Means (M ± SEM) of the trace element concentrations (mg/L or 
mg/dm3, on wet mass basis) and the per cent volumes (% of gland 
volume) of main histologic components (stroma, epithelium, and 
lumen) in nonhyperplastic adult and geriatric prostate glands of 
males of different age groups are shown in table 4. These parameters 
are shown for the age groups 1 (range 21–40 years), 2 (range 41–60 
years), 3 (range 61–87 years), and for the age groups 2 and 3 combined 
(range 41–87 years).

The ratios of means and the difference between mean values 
of trace element concentrations and between mean values of 
morphometric parameters in the age groups 1, 2, 3, as well as 2 and 3 
combined are presented in table 5.

Table 6 compiles Pearson correlation coefficients between the 54 
trace element concentrations (mg/L or mg/dm3, on wet mass basis) 
and the morphometric parameters (% of gland volume) in age ranges 
21-40 years and 41-87 years.

Figure 1 illustrates individual data sets for the Bi, Cd, Pb, Sn, 
and Zn concentrations and the per cent volume (stroma, epithelium, 

viewed by microscopy at × 120 magnification. In order to obtain 
information about changes in prostatic components (acini and 
stroma), the surfaces adjacent to the acini (i.e., epithelium plus lumen), 
the epithelium tissue alone and the stroma were also measured in 10 
randomly selected microscopic fields for each histological section. The 
number of microscopic fields per section studied was determined by 
successive approaches to obtain the minimum number of microscopic 
fields required to reach the lowest standard deviation (SD). A greater 
number of microscopic fields did not decrease the SD significantly. 
The mean per cent volumes of the stroma, glandular epithelium, and 
glandular lumen were determined for each prostate specimen.

Standards and certified reference materials

To determine concentration of the trace elements by comparison 
with known standard, aliquots of commercial, chemically pure 
compounds were used for a calibration [49]. For quality control, ten 
subsamples of the certified reference materials (CRM) IAEA H-4 
Animal muscle and IAEA HH-1 Human hair from the International 
Atomic Energy Agency (IAEA), and also five sub-samples INCT-
SBF-4 Soya Bean Flour, INCT-TL-1 Tea Leaves and INCT-MPH-2 
Mixed Polish Herbs from the Institute of Nuclear Chemistry and 
Technology (INCT, Warszawa, Poland) were analyzed simultaneously 
with the investigated prostate tissue samples. All samples of CRM 
were treated in the same way as the prostate tissue samples. Detailed 
results of this quality assurance program were presented in earlier 
publications [17,18,22,24].

Computer programs and statistics

A dedicated computer program of NAA mode optimization 
was utilized [50]. Using Microsoft Office Excel software to provide 
a summary of statistical results, the arithmetic mean, standard 
deviation, standard error of mean, minimum and maximum values, 
median, percentiles with 0.025 and 0.975 levels were calculated 
for all the trace element concentrations obtained as well as for the 
morphometric parameters. For elements investigated by two methods 
the mean of all results was used. The difference in the results between 
all age groups was evaluated by Student’s parametric t-test. The 
Microsoft Office Excel software was also used for the construction of 
“trace element concentration versus age”, “morphometric parameter 
versus age”, and “trace element concentration versus morphometric 
parameter” diagrams and the estimation of the Pearson correlation 

Table 1: Comparison of mean values (M ± SEM) trace element concentrations (mg/L, wet mass basis) in the non-hyperplastic prostate gland of males between ages 
21–87 years obtained by both INAA-LLR and ICP-MS methods.

Element NAA-LLR (M1) ICP-MS (M2) ∆ (%) Student’s t-test

Ag 0.0117 ± 0.0015 0.0081 ± 0.0010 30.8 N.S.
As < 0.02 ≤  0.0040 - -
Au < 0.003 0.00085 ± 0.00013 - -
Br 5.88 ± 0.62 - -
Co 0.00784 ± 0.00061 0.00773 ± 0.00077 1.4 N.S.
Cr 0.095 ± 0.010 0.105 ± 0.011 -10.5 N.S.
Cs < 0.01 0.00691 ± 0.00040 - -
Eu < 0.0003 ≤  0.00011 - -
Gd < 0.04 0.00055 ± 0.00007 - -
Hf < 0.02 ≤  0.0039 - -
Hg 0.0088 ± 0.0012 0.0097 ± 0.0013 -10.2 N.S.
Rb 2.52 ± 0.32 3.24 ± 0.14 -28.6 N.S.
Sb 0.0102 ± 0.0015 0.0071 ± 0.0007 30.4 N.S.
Se 0.136 ± 0.010 0.160 ± 0.007 -17.6 N.S.
Sm < 0.002 0.00050 ± 0.00006 - -
Ta < 0.02 ≤  0.0011 - -
Tb < 0.005 0.000074 ± 0.000011 - -
Th < 0.01 0.00055 ± 0.00010 - -
U < 0.01 0.00105 ± 0.00026 - -
Yb < 0.005 0.00029 ± 0.00005 - -
Zn 164 ± 14 173 ± 19 -5.5 N.S.
Zr < 0.2 0.0080 ± 0.0014 - -

M: Arithmetic Mean, SEM: Standard Error of Mean, “<” detection limit of method, “≤” the possible upper limit of the mean (see text), ∆ = [(M1 – M2)/M1]. 100%, N.S: 
Not Significant.
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Discussion
Precision and accuracy

The use of two analytical methods one by one allowed us to estimate 
the mass fractions of 54 trace elements in human prostate tissue. Good 
agreement was found between the mean values of the Ag, Co, Cr, Hg, 

and lumen) in the nonhyperplastic prostate glands of males aged 
between 21-87 years and their trend lines with equations of best fit. 
Figure 2 and Figure 3 shows individual data sets for the Br and Mo 
concentration versus individual data sets for the percent volume of 
stroma and lumen in the nonhyperplastic prostate gland of males 
between ages 21–40 years and 41–87 years, respectively.

Table 2: Basic statistical parameters of trace element concentrations (mg/L) and the per cent volumes of main histological components (%) in the nonhyperplastic 
prostate gland of males between ages 21–87 years (n = 65).

Parameter M SD SEM Min Max Med P0.025 P0.975

Ag 0.0097 0.0081 0.0011 0.00099 0.0392 0.00633 0.00129 0.0277
Al 6.88 3.95 0.61 1.61 17.3 5.71 1.80 14.5
As ≤  0.0040 - - < 0.002 0.049 - - -
Au 0.00085 0.00077 0.00013 0.000175 0.00313 0.00048 0.00018 0.00243
B 0.188 0.130 0.021 0.0558 0.603 0.152 0.0597 0.560
Be 0.000193 0.000074 0.000012 0.0000805 0.000439 0.00017 0.00010 0.00038
Bi 0.0043 0.0102 0.0016 0.000186 0.0491 0.00089 0.00028 0.0390
Br 5.88 4.36 0.62 0.576 20.3 4.52 0.619 16.9
Cd 0.190 0.131 0.020 0.0278 0.551 0.149 0.0428 0.520
Ce 0.00562 0.00515 0.00081 0.00099 0.0259 0.00409 0.00110 0.0182
Co 0.00813 0.00600 0.00079 0.00245 0.0418 0.00691 0.00277 0.0207
Cr 0.104 0.083 0.011 0.00718 0.370 0.0877 0.00899 0.355
Cs 0.00691 0.00261 0.00040 0.00204 0.0162 0.00651 0.00258 0.0108
Dy 0.000570 0.000505 0.000079 0.0000945 0.00217 0.00039 0.00011 0.00203
Er 0.000302 0.000274 0.000043 0.0000378 0.00125 0.00021 0.00007 0.00103
Eu ≤  0.00011 - - < 0.00008 0.00029 - - -

Fe 20.5 9.8 1.3 6.06 54.1 19.4 7.07 44.0
Ga ≤  0.017 - - < 0.004 0.091 - - -
Gd 0.000553 0.000458 0.000072 0.0000709 0.00201 0.00037 0.00009 0.00158
Hf ≤  0.0039 - - < 0.002 0.016 - - -
Hg 0.00916 0.00743 0.00098 0.00147 0.0352 0.00647 0.00244 0.0292
Ho 0.000110 0.000096 0.000015 0.0000177 0.000423 0.00007 0.00002 0.00035
Ir ≤  0.00009 - - < 0.00004 0.00027 - - -
La 0.0157 0.0215 0.0033 0.00140 0.0885 0.00559 0.00142 0.0791
Li 0.00837 0.00556 0.00088 0.00274 0.0242 0.00624 0.00296 0.0201
Lu ≤  0.00005 - - < 0.000015 0.00018 - - -
Mn 0.286 0.101 0.016 0.169 0.764 0.271 0.179 0.499
Mo 0.0576 0.0319 0.0049 0.0197 0.136 0.0500 0.0199 0.130
Nb 0.00100 0.00121 0.00019 0.000175 0.00573 0.00050 0.00018 0.00410
Nd 0.00257 0.00210 0.00033 0.000548 0.00829 0.00175 0.00057 0.00807
Ni 0.721 0.516 0.081 0.0382 2.23 0.662 0.0473 2.04
Pb 0.389 0.515 0.078 0.0298 1.85 0.113 0.0439 1.71
Pd ≤  0.0015 - - < 0.001 0.0027 - - -
Pr 0.000655 0.000552 0.000086 0.000110 0.00229 0.00049 0.00013 0.00209
Pt ≤  0.00012 - - < 0.0001 0.00027 - - -
Rb 2.80 0.96 0.12 0.852 5.18 2.83 1.02 4.90
Re ≤  0.00021 - - < 0.00015 0.00030 - - -
Sb 0.00908 0.00697 0.00090 0.00159 0.0320 0.00789 0.00179 0.0305
Sc 0.00440 0.00420 0.00063 0.000651 0.0185 0.00279 0.00081 0.0154
Se 0.148 0.053 0.007 0.0417 0.289 0.139 0.0613 0.268
Sm 0.000502 0.000401 0.000062 0.0000851 0.00147 0.00036 0.00010 0.00141
Sn 0.0512 0.0578 0.0089 0.00362 0.228 0.0256 0.00589 0.201
Ta ≤  0.0011 - - < 0.0008 0.0025 - - -
Tb 0.000074 0.000068 0.000011 0.0000128 0.000284 0.00005 0.00001 0.00023
Te < 0.0006 - - < 0.0006 - - - -
Th 0.000548 0.000605 0.000095 0.0000914 0.00395 0.00030 0.00010 0.00188
Ti* 0.492 0.572 0.091 0.121 2.75 0.234 0.128 1.96
Tl 0.000285 0.000136 0.000021 0.0000500 0.000573 0.00026 0.00007 0.00054
Tm 0.000049 0.000043 0.000007 0.0000073 0.000200 0.00003 0.00001 0.00016
U 0.00105 0.00164 0.00026 0.0000987 0.00708 0.00051 0.00013 0.00630
Y 0.00371 0.00416 0.00064 0.0000992 0.0168 0.00188 0.00043 0.0147
Yb 0.000287 0.000289 0.000045 0.0000236 0.00121 0.00017 0.00004 0.00092
Zn 169 132 16 42.1 931 127 51.0 410
Zr 0.0080 0.0087 0.0014 0.00142 0.0480 0.00449 0.00183 0.0218
Stroma 50.0 11.0 1.5 26.7 76.7 50.0 31.5 72.1
Epithelium 32.0 8.3 1.2 14.6 55.9 31.0 15.5 51.4
Lumen 18.0 6.8 1.0 3.70 34.3 16.7 6.89 31.9

M: Arithmetic Mean, SD: Standard Deviation, SEM: Standard Error of Mean, Min: Minimum value, Max: Maximum value, Med: Median Per. 0.025 percentile with 0.025 
level, Per. 0.975 percentile with 0.975 level, DL:  Detection Limit, *Titanium tools were used for sampling and sample preparation.
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agreement with the certified values and within the corresponding 95% 
confidence intervals [17,18,22,24] suggests an acceptable accuracy of the 
measurements performed on in prostate tissue samples.

Concentration of trace elements

Table 2 summarizes mean values and all selected statistical 

Rb, Sb, Se, and Zn concentrations determined by NAA-LLR and ICP-
MS (Table 1). Good agreement between NAA-LLR and ICP-MS 
data indicates complete digestion of the prostate tissue samples (for 
ICP-MS techniques) and correctness of all results obtained by the two 
methods. The fact that the elemental mass fractions (M ± SD) of the 
certified reference materials obtained in the present work were in good 

Table 3: Median, minimum and maximum value of means of chemical element concentrations (mg/L) and the per cent volumes of main histological components (%) 
in prostate tissue of adult males according to data from the literature in comparison with this works’ results for males aged 21–87 years.

Element Published data [Reference] This work
Median 

of means, (n)*

Minimum of means 

M or M ± SD, (n)**

Maximum of means 

M or M ± SD, (n)**

M ± SD

N = 65
Ag 0.0087 (11) < 0.001 (48) [51] 0.04 (7) [52] 0.0097 ± 0.0081
Al 6.1 (9) 2.8 ± 15  (50) [51] 11 (9) [53] 6.9 ± 4.0
As 0.0057 (5) 0.00091 (21) [54] 0.0081 ± 0.0039 (10) [55] ≤ 0.0040
Au 0.0009 (7) 0.00079 ± 0.00087 (21) [44] 0.27 (3 [52] 0.00085  0.00077
B 0.18 (10) < 0.1  (50) [51] 0.23 ± 0.23 (21) [44] 0.19 ± 0.13
Be 0.00023 (5) 0.00016 ± 0.00004 (28) [27] 0.00053 ± 0.00089 (16) [24] 0.000193 ± 0.000074
Bi 0.0033 (6) 0.00069 ± 0.00030 (16) [56] < 0.02 (50) [51] 0.0043 ± 0.0102
Br 5.4 (18) 2.5 ± 1.7 (4) [57] 8.9 ± 5.6 (10) [58] 5.9 ± 4.4
Cd 0.14 (26) 0.012 (129) [59] 77  89 (55) [61] 0.19 ± 0.13
Ce 0.0049 (5) 0.0033 ± 0.0035 (16) [56] 0.0087 ± 0.0118 (16) [24] 0.0056 ± 0.0052
Co 0.0063(12) 0.023 ± 0.011 (16) [22] 2.6 (9) [53] 0.0081 ± 0.0060
Cr 0.09 (15) 0.009 (50) [51] 5.2 ± 1.1 (5) [61] 0.104 ± 0.083
Cs 0.0063 (7) 0.0055 ± 0.0028 (10) [27] 0.63 (12) [62] 0.0069 ± 0.0026
Dy 0.00053 (5) 0.00037 ± 0.00033 (16) [56] 0.0015 ± 0.0018 (16) [24] 0.00057 ± 0.00051
Er 0.00026 (5) 0.00020 ± 0.00020 (16) [56] 0.00071 ± 0.00107 (16) [24] 0.00030 ± 0.00027
Eu ≤ 0.0001 (3) ≤ 0.00008 (28) [27] ≤ 0.0002 (16) [24] ≤ 0.00011
Fe 26 (34) 1.02 ± 0.02 (5) [63] 218 ± 14 (10) [64] 20.5 ± 9.8
Ga ≤ 0.015 (3) ≤ 0.0063 (10) [27] ≤ 0.017 (28) [27] ≤ 0.017
Gd 0.00051 (5) 0.00033±0.00030 (16) [56] 0.0013 ± 0.0018 (16) [24] 0.00055 ± 0.00046
Hf ≤ 0.0040 (3) ≤ 0.0027 (10) [27] ≤ 0.0087 (16) [24] ≤ 0.0039
Hg 0.0065 (10) 0.0043 ± 0.0025 (16) [22] 0.12 ± 0.11 (5) [55] 0.0092 ± 0.0074
Ho 0.000102 (5) 0.000067 ± 0.000065 (16) [56] 0.00018 ± 0.00035 (16) [24] 0.000110 ± 0.000096
Ir ≤ 0.000079 (3) ≤ 0.000067 (28) [27] ≤ 0.000097 (16) [24] ≤ 0.000088
La 0.0085 (5) 0.0028 ± 0.0021 (16) [56] 0.017 ± 0.020 (27) [27] 0.016 ± 0.022
Li 0.0074 (8) 0.0071 ± 0.0043 (64) [19] 0.012 ± 0.008 (16) [24] 0.0084 ± 0.0056
Lu ≤ 0.000039 (3) ≤ 0.000035 (10) [27] ≤ 0.00012 (16) [24] ≤ 0.000045
Mn 0.26 (24) < 0.01 (12) [62] 19.0 ± 3.2 (5) [61] 0.29 ± 0.10
Mo 0.054 (7) 0.04 (50) [51] 0.38 (2) [52] 0.058 ± 0.032
Nb 0.00079 (5) 0.00040 ± 0.00037 (16) [56] 0.0023 ± 0.0036 (16) [24] 0.0010 ± 0.0012
Nd 0.0023 (5) 0.0017 ± 0.0016 (16) [56] 0.0045 ± 0.0061 (16) [24] 0.0026 ± 0.0021
Ni 0.71 (10) 0.03 (4) [65] 2.52 ± 0.75 (27) [66] 0.72 ± 0.52
Pb 0.21 (17) 0.027 (41) [67] 1.7 (4) [68] 0.39 ± 0.52
Pd ≤ 0.0014 (3) ≤ 0.0012 (64) [18] ≤ 0.0025 (16) [24] ≤ 0.0015
Pr 0.00059 (5) 0.00043  0.00045 (16) [56] 0.0011 ± 0.0015 (16) [24] 0.00066 ± 0.00055
Pt ≤ 0.00011 (3) ≤ 0.00010 (28) [27] ≤ 0.00051 (16) [24] ≤ 0.00012
Rb 2.5 (16) 1.1 (9) [53] 12.2 ± 6.9 (4) [68] 2.80 ± 0.96
Re ≤ 0.00019 (3) ≤ 0.00018 (28) [27] ≤ 0.00086 (64) [24] ≤ 0.00021
Sb 0.0091 (10) 0.0069 ± 0.0046 (10) [27] 0.075 ± 0.099 (7) [55] 0.0091 ± 0.0070
Sc 0.0025 (8) 0.0015 ± 0.0018 (16) [64] 0.0056 ± 0.0045 (27) [17] 0.0044 ± 0.0042
Se 0.13 (22) 0.056 (129) [59] 3.36 ± 0.43 (27) [66] 0.148 ± 0.053
Sm 0.00047 (5) 0.00030 ± 0.00028 (16) [56] 0.0011 ± 0.0015 (16) [24] 0.00050 ± 0.00040
Sn 0.045 (9) 0.020 ± 0.018 (16) [56] 0.78 (7) [52] 0.051 ± 0.058
Ta ≤ 0.00089 (3) ≤ 0.00084 (10) [27] ≤ 0.0018 (16) [24] ≤ 0.0011
Tb 0.000070 (5) 0.000038  0.000038 (16) [56] 0.00018  0.00036 (16) [24] 0.000074 ± 0.000068
Te 17.2 (4) < 0.0005 (65) [27] 34.4 (2) [68] < 0.0006
Th 0.00047 (5) 0.00027  0.00018 (16) [56] 0.0015 ± 0.0020 (16) [24] 0.00055 ± 0.00061
Ti* 0.50 (10) < 0.05 (50) [51] 27.9 ± 1.7 (27) [66] 0.49 ± 0.57
Tl 0.00026 (7) 0.00023  0.00011 (27) [27] 0.11 (1) [52] 0.00029 ± 0.00014
Tm 0.000043 (5) 0.000032 ± 0.000033(16) [56] 0.00011 ± 0.00018 (16) [24] 0.000049 ± 0.000043
U 0.00087(6) 0.00027  0.00020 (16) [56] 0.071 (1) [69] 0.0011 ± 0.0016
Y 0.0035 (3) 0.0016 ± 0.0015 (16) [56] 20.0 (12) [62] 0.0037 ± 0.0042
Yb 0.00025 (4) 0.00023  0.00027 (28) [27] 0.00066  0.00110 (16) [24] 0.00029 ± 0.00029
Zn 93.8 (75) 18.1 (1) [70] 574 ± 7 (10) [64] 169 ± 132
Zr 0.0081 (5) 0.0064 ± 0.0048 (27) [27] 0.028 ± 0.038 (16) [24] 0.0080 ± 0.0087
Stroma 53 (5) 45.0 (56) [40] 67.0 (19) [40] 50.0 ± 11.0
Epithelium 26.5 (4) 16 (19) [40] 33.0 (56) [40] 32.0 ± 8.3
Lumen 21.8 (4) 17 (24) [40] 31 (68) [41] 18.0 ± 6.8

M: Arithmetic mean, SD: Standard Deviation, (n)*: No. of references contribution to this value, (n)**: No. of samples.
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of values for trace element concentration were not expressed on a 
wet mass basis by the authors of the cited references. However, we 
recalculated these values using published data for water - 83% [72] 
and ash – 1.0% [73] content on a wet-mass basis for the prostates 
of adult men as well as data for adult prostate tissue density - 1.05 kg/L 
[71]. The means of morphometric parameters for adult nonhyperplastic 
prostate glands found in the present study also agree well with median 
of means cited by other researches (Table 3).

Age-related changes

To analyze the effect of age on the trace element concentrations 
in the prostate we examined the three age groups, described above 
(Table 4 and Table 5). In the histologically normal prostates, we 
have observed an increase in concentration of Bi, Cd, Co, Fe, Hg, Sc, 
Sn, and Zn with age from 21 to 60 years. In particular, a significant 
tendency of age-related increase in Cd (p < 0.002) and Zn (p < 0.002) 

parameters were calculated for 54 trace element concentrations. 
Concentrations of all these elements were measured in most of the 
prostate samples. Since we were using dry samples for INAA-LLR 
and ICP-MS the results were expressed as mass fractions (MF) in mg/
kg on dry mass basis, and the concentration Cij for the i element in the 
j sample was calculated as:

Cij (mg/L) = MFij × (Mj
dry/Mj

wet) ×1.05		  [1]

Where, Mj
dry is the mass of sample j after drying, Mj

wet is the mass 
of sample j before drying, and 1.05 (kg/L) is the density of normal 
prostate tissue [71].

The obtained values for almost all trace element concentration 
in intact adult and geriatric prostate glands (Table 2), as shown in 
table 3, agree well with median of means cited in literature for the 
nonhyperplastic prostate tissue of adult males, including samples 
received from persons who died from various diseases. A number 

Table 4: Means (M ± SEM) of the trace element concentrations (mg/L) and the per cent volumes (%) of main histologic components (stroma, epithelium, and lumen) 
in nonhyperplastic adult and geriatric prostate glands of males of different age groups.

Parameter Group I

 21–40 years

N = 28

Group 2 

41–60 years 

N = 27

Group 3 

61–87 years

N = 10

Group 2 and 3 

41–87 years

 N = 37
Ag 0.0116 ± 0.0018 0.0094 ± 0.0019 0.0063 ± 0.0016 0.00084 ± 0.0014
Al 6.21 ± 0.90 7.34 ± 1.02 7.30 ± 1.42 7.33 ± 0.82
Au 0.00081 ± 0.00021 0.00071 ± 0.00018 0.00127 ± 0.00034 0.00088 ± 0.00017
B 0.156 ± 0.016 0.203 ± 0.039 0.216 ± 0.064 0.207 ± 0.033
Be 0.000182 ± 0.000016 0.000202 ± 0.000016 0.000197 ± 0.000042 0.000201 ± 0.000016
Bi 0.00087 ± 0.00013 0.00824 ± 0.00341 0.00158 ± 0.00055 0.00637 ± 0.00252
Br 5.55 ± 0.99 5.86 ± 0.99 7.01 ± 1.26 6.17 ± 0.79
Cd 0.118 ± 0.015 0.232 ± 0.031 0.250 ± 0.066 0.237 ± 0.028
Ce 0.0040 ± 0.0009 0.0071 ± 0.0016 0.0058 ± 0.0016 0.0067 ± 0.0012
Co 0.0062 ± 0.0006 0.0089 ± 0.0010 0.0120 ± 0.0039 0.0098 ± 0.0013
Cr 0.093 ± 0.015 0.099 ± 0.016 0.156 ± 0.041 0.114 ± 0.016
Cs 0.00684 ± 0.00049 0.00723 ± 0.00072 0.00621 ± 0.00094 0.00696 ± 0.00058
Dy 0.00047 ± 0.00010 0.00062 ± 0.00013 0.00070 ± 0.00025 0.00064 ± 0.00011
Er 0.000270 ± 0.000068 0.000327 ± 0.000074 0.000324 ± 0.000079 0.000326 ± 0.000056
Fe 17.1 ± 1.4 23.7 ± 2.4 21.8 ± 2.8 23.3 ± 1.9
Gd 0.00044 ± 0.00010 0.00064 ± 0.00012 0.00062 ± 0.00015 0.00064 ± 0.00010
Hg 0.0071 ± 0.0009 0.0121 ± 0.0020 0.0077 ± 0.0023 0.0108 ± 0.0016
Ho 0.000089 ± 0.000022 0.000129 ± 0.000026 0.000114 ± 0.000025 0.000125 ± 0.000020
La 0.0121 ± 0.0040 0.0220 ± 0.0062 0.0068 ± 0.0028 0.0179 ± 0.0048
Li 0.0080 ± 0.0015 0.0086 ± 0.0012 0.0087 ± 0.0024 0.0086 ± 0.0011
Mn 0.285 ± 0.018 0.297 ± 0.033 0.260 ± 0.019 0.286 ± 0.024
Mo 0.0570 ± 0.0073 0.0649 ± 0.0087 0.0402 ± 0.0053 0.0580 ± 0.0067
Nb 0.00071 ± 0.00018 0.00138 ± 0.00040 0.00079 ± 0.00022 0.00120 ± 0.00029
Nd 0.00199 ± 0.00042 0.00312 ± 0.00062 0.00272 ± 0.00070 0.00300 ± 0.00048
Ni 0.78 ± 0.10 0.73 ± 0.16 0.56 ± 0.12 0.68 ± 0.12
Pb 0.22 ± 0.07 0.54 ± 0.15 0.40 ± 0.17 0.50 ± 0.12
Pr 0.00050 ± 0.00011 0.00080 ± 0.00015 0.00068 ± 0.00019 0.00077 ± 0.00012
Rb 2.82 ± 0.16 2.96 ± 0.22 2.31 ± 0.27 2.79 ± 0.18
Sb 0.0092 ± 0.0012 0.0091 ± 0.0017 0.0084 ± 0.0019 0.0089 ± 0.0013
Sc 0.0029 ± 0.0005 0.0065 ± 0.0013 0.0046 ± 0.0013 0.0033 ± 0.0008
Se 0.138 ± 0.010 0.151 ± 0.010 0.170 ± 0.022 0.157 ± 0.009
Sm 0.00039 ± 0.00010 0.00059 ± 0.00010 0.00055 ± 0.00014 0.00058 ± 0.00008
Sn 0.025 ± 0.005 0.080 ± 0.017 0.034 ± 0.011 0.067 ± 0.013
Tb 0.000056 ± 0.000015 0.000089 ± 0.000018 0.000082 ± 0.000024 0.000087 ± 0.000014
Th 0.00032 ± 0.00005 0.00063 ± 0.00019 0.00090 ± 0.00021 0.00071 ± 0.00015
Ti* 0.35 ± 0.10 0.73 ± 0.17 0.23 ± 0.05 0.60 ± 0.14
Tl 0.000273 ± 0.000026 0.000285 ± 0.000038 0.000314 ± 0.000064 0.000293 ± 0.000032
Tm 0.000043 ± 0.000011 0.000054 ± 0.000011 0.000050 ± 0.000010 0.000053 ± 0.000008
U 0.00051 ± 0.00013 0.00146 ± 0.00046 0.00111 ± 0.00075 0.00136 ± 0.00039
Y 0.00312 ± 0.00077 0.00471 ± 0.00122 0.00236 ± 0.00062 0.00408 ± 0.00093
Yb 0.000246 ± 0.000070 0.000319 ± 0.000077 0.000307 ± 0.000089 0.000315 ± 0.000059
Zn 108 ± 9 228 ± 34 178 ± 23 215 ± 26
Zr 0.0084 ± 0.0028 0.0078 ± 0.0015 0.0075 ± 0.0024 0.0077 ± 0.0013
Stroma 48.2 ± 2.2 48.4 ± 2.3 60.8 ± 3.2 51.5 ± 2.1
Epithelium 35.7 ± 1.7 29.9 ± 1.5 25.6 ± 2.2 28.8 ± 1.3
Lumen 16.1 ± 1.0 21.7 ± 1.7 13.6 ± 1.5 19.7 ± 1.5
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An increase of Bi, Cd, Pb, and Zn concentration in the prostate 
parenchyma with age from 21 to 87 years is more ideally fitted by a 
polynomial law, but an increase of Sn - a logarithmic low (Figure 1). 
In our study the best fit in the proportion variance accounted for 
(i.e., R2) sense maximizes the value of R2 using a linear, polynomial, 
exponential, logarithmic or power law.

This work’s result for age-dependence of Cd, Fe and Zn 
concentration is in accordance with earlier findings [59,67,74,75]. 
For example, Oldereid, et al. [67] and Schöpfer, et al. [59] showed 
that prostatic concentrations of Cd increased with increasing age and 
at the age about 60 years was 3-4 times higher than at the age 20. 
Heinzsch, et al. [74] found that the Zn concentration in the normal 
prostate was higher in the age group 51-70 years than in the age group 
31-50 years by approximately 1.8 times, and somewhat lower (but the 

concentration was observed in prostate (Table 5). For example, in 
prostate in group 2 mean value of the Cd and Zn concentration was 
2.02 and 1.99 times greater, respectively, than in prostate of members 
of group 1 (Table 5).

From the distribution of individual data sets for the trace 
element concentrations (Figure 1) and from the comparison of the 
concentration means in the three age groups (Table 5), it followed 
that the concentrations of Bi, Cd, Pb, Sn, and Zn increased in the 
age range 20–60 years and reached a maximum somewhere in the 
sixth decade (Figure 1). In the histologically normal prostates of men 
in the age range 60–87 years the concentrations of these elements 
were maintained at approximately constant levels (Figure 1). Thus, 
the main changes of chemical element contents with age in prostate 
tissue are found at the age between 21 and 60 years.

Table 5: Ratio of mean values (M) and the difference between mean values of trace element concentrations and the per cent volumes of main histological components 
in nonhyperplastic adult and geriatric prostate glands of the different age groups.

Parameter Ratio of means* The difference between means  

(Student’s t-test, p < )
M2/M1 M3/M1 M3/M2 M2+3/M1 M1 & M2 M1 & M3 M2 & M3 M1 & M2+3

Ag 0.81 0.55 0.67 0.72 0.393 0.034 0.224 0.157
Al 1.18 1.18 1.00 1.18 0.413 0.530 0.981 0.365
Au 0.87 1.55 1.78 1.06 0.705 0.288 0.186 0.821
B 1.30 1.38 1.07 1.32 0.284 0.393 0.860 0.174
Be 1.11 1.02 0.97 1.10 0.389 0.761 0.901 0.429
Bi 9.51 1.83 0.19 7.40 0.046 0.250 0.070 0.039
Br 1.05 1.27 1.20 1.11 0.826 0.379 0.486 0.629
Cd 1.97 2.13 1.08 2.02 0.002 0.095 0.810 0.001
Ce 1.77 1.43 0.81 1.66 0.094 0.376 0.543 0.077
Co 1.44 1.93 1.34 1.58 0.027 0.178 0.466 0.016
Cr 1.07 1.67 1.57 1.21 0.798 0.193 0.236 0.375
Cs 1.06 0.91 0.86 1.02 0.652 0.565 0.400 0.875
Dy 1.32 1.50 1.14 1.37 0.370 0.413 0.762 0.263
Er 1.21 1.20 0.99 1.21 0.573 0.606 0.982 0.526
Fe 1.39 1.28 0.92 1.36 0.023 0.165 0.607 0.013
Gd 1.47 1.42 0.97 1.46 0.209 0.330 0.897 0.165
Hg 1.70 1.08 0.63 1.52 0.026 0.822 0.154 0.042
Ho 1.45 1.28 0.87 1.40 0.250 0.471 0.678 0.238
La 1.82 0.56 0.31 1.48 0.192 0.282 0.036 0.358
Li 1.08 1.09 1.01 1.08 0.760 0.798 0.960 0.733
Mn 1.04 0.92 0.88 1.01 0.750 0.352 0.346 0.963
Mo 1.14 0.71 0.62 1.02 0.487 0.077 0.023 0.918
Nb 1.93 1.10 0.57 1.69 0.142 0.790 0.209 0.158
Nd 1.56 1.36 0.87 1.51 0.146 0.394 0.674 0.122
Ni 0.93 0.71 0.76 0.87 0.781 0.179 0.405 0.514
Pb 2.50 1.84 0.73 2.33 0.059 0.352 0.551 0.043
Pr 1.58 1.35 0.86 1.52 0.124 0.433 0.621 0.115
Rb 1.05 0.82 0.78 0.99 0.622 0.127 0.080 0.880
Sb 0.99 0.92 0.93 0.97 0.939 0.735 0.808 0.854
Sc 2.25 1.59 0.71 2.14 0.018 0.324 0.360 0.013
Se 1.10 1.24 1.13 1.14 0.338 0.211 0.467 0.175
Sm 1.50 1.39 0.93 1.47 0.162 0.391 0.803 0.150
Sn 3.18 1.34 0.42 2.68 0.005 0.509 0.031 0.005
Tb 1.60 1.49 0.93 1.57 0.173 0.377 0.837 0.145
Th 1.97 2.83 1.43 2.24 0.138 0.029 0.354 0.020
Ti* 2.06 0.64 0.31 1.70 0.074 0.286 0.012 0.161
Tl 1.05 1.15 1.10 1.08 0.798 0.573 0.707 0.626
Tm 1.27 1.17 0.92 1.23 0.499 0.651 0.805 0.492
U 2.90 2.21 0.76 2.71 0.060 0.459 0.704 0.044
Y 1.52 0.75 0.50 1.31 0.280 0.450 0.100 0.432
Yb 1.30 1.25 0.96 1.28 0.490 0.599 0.923 0.455
Zn 2.12 1.65 0.78 1.99 0.002 0.016 0.231 0.0003
Zr 0.93 0.89 0.96 0.92 0.868 0.809 0.900 0.836
Stroma 1.00 1.26 1.26 1.07 0.941 0.007 0.008 0.278
Epithelium 0.84 0.72 0.86 0.81 0.015 0.003 0.133 0.003
Lumen 1.35 0.84 0.63 1.22 0.007 0.188 0.002 0.046

M1,2,3: Arithmetic mean in age group 1, 2, and 3, respectively, M2+3
: Arithmetic mean in age group 2 and 3 combined (see Table 5), Statistically significant values are 

in bold
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between 30 to 50 years of age.

Shapiro, et al. [76] reported that the stromal compartment 
fraction (approximately 80%) of the prostate remains constant 
in males throughout life. In contrast, the present study provides 
compelling evidence that the per cent volume of stroma, epithelium, 
and lumen of the prostate changes significantly in males between 
ages 21-70. Our finding is in agreement with an earlier publication 
by Arenas, et al. [40] where he reported that the stromal volume was 
maintained between ages 20-50 and only significantly increased in the 
sixth and seventh decades, while epithelial volume showed a tendency 
to diminish.

Correlations between trace element concentrations and the 
per cent volumes of main histological components

A direct correlation between the prostatic Zn (r = 0.53) 
concentration and per cent volume of the glandular lumen as well 
as between the Be (r = 0.58), Mo (r = 0.52), Th (r = 0.51), Ti (r = 
0.50) concentration and per cent volume of the stroma and also 
between the Cs (r = 0.57) concentration and per cent volume of 
the epithelium was seen in the age group 1 (Table 6, Figure 3). 
Moreover, in the age group 1 a significant inverse correlation 

difference was not statistically significant) in the age group 71-90 
years, compared with the age group 51-70 years. In accordance with 
Tohno, et al. [75] there were no significant correlations between age 
and the Fe and Zn concentrations in prostate tissue of Thai subjects, 
whose ages ranged from 43 to 86 years and of Japanese subjects, with 
age from 65 to 101 years. All these conclusions agree with our results.

In the histologically normal adult prostates mean per cent volumes 
of stroma were maintained at about 50% and only increased above this 
value in the seventh decade (Figure 1, Table 4 and Table 5). In the group 
older than 60-years-old stroma volume increased ~1.3 times (60.8%, 
age group 3) (Table 4 and Table 5), which was statistically significant. 
The mean per cent volume of the glandular epithelium steadily and 
almost linearly decreased from 35.7% to 28.4 % over the same period 
(Figure 1, Table 5). These differences were statistically significant for 
the age group 3 when compared with the age groups 1 or 2 (Table 5). 
The mean per cent volume of the glandular lumen increased between 
the third to the fifth decade and reached its maximum at about 50 years 
old (Figure 1). During this period of life the mean per cent volume of 
glandular lumen was almost 1.5 times higher than in prostate glands 
of 20 to 30 year old males, which is statistically significant (Table 5). 
This suggests that relative accumulation of prostatic fluid develops 

Table 6: Correlations (r - coefficient of correlation) between trace element concentrations (mg/L) and the per cent volumes of main histological components (%) in 
nonhyperplastic adult and geriatric prostate glands.

Element Group 1, 21-40 years, n = 28 Group 2 and 3 combined, 41-87 years, n = 37
Stroma Epithelium Lumen Stroma Epithelium Lumen

Ag -0.285 0.239 0.229 0.214 -0.217 -0.112
Al 0.447 -0.408 -0.308 0.448 -0.196 -0.486
Au 0.430 -0.267 -0.516 0.250 -0.232 -0.131
B -0.072 0.121 -0.066 -0.146 0.156 0.069
Be 0.578 -0.498 -0.449 0.199 -0.070 -0.234
Bi 0.339 -0.260 -0.179 0.109 -0.133 -0.031
Br -0.068 -0.008 0.160 0.498 -0.402 -0.343
Cd 0.446 -0.308 -0.480 0.469 -0.321 -0.380
Ce 0.442 -0.340 -0.416 0.284 -0.151 -0.279
Co 0.266 -0.378 0.080 0.296 -0.289 -0.185
Cr 0.190 -0.214 -0.038 0.276 -0.165 -0.275
Cs -0.449 0.569 0.032 -0.035 -0.210 0.255
Dy 0.248 -0.171 -0.268 0.284 0.051 -0.481
Er 0.357 -0.285 -0.318 0.284 0.075 -0.504
Fe -0.041 -0.128 0.318 0.245 0.235 0.154
Gd 0.349 -0.275 -0.316 0.360 -0.031 -0.515
Hg -0.311 0.202 0.339 0.112 -0.208 0.019
Ho 0.335 -0.280 -0.277 0.323 0.034 -0.523
La 0.204 -0.252 -0.034 0.195 0.033 -0.321
Li -0.015 -0.089 0.190 0.227 -0.273 -0.075
Mn -0.137 -0.012 0.325 0.312 -0.192 -0.339
Mo 0.520 -0.267 -0.719 -0.162 -0.111 0.355
Nb -0.009 -0.157 0.292 0.186 0.029 -0.357
Nd 0.412 -0.315 -0.390 0.378 -0.115 -0.459
Ni 0.259 -0.063 -0.480 -0.113 -0.277 0.424
Pb -0.078 -0.072 0.301 0.194 -0.202 -0.089
Pr 0.454 -0.357 -0.413 0.289 -0.109 -0.329
Rb -0.059 -0.014 0.166 0.089 -0.035 -0.095
Sb 0.074 -0.142 0.069 0.061 -0.054 -0.036
Sc 0.115 -0.280 0.234 0.008 0.081 0.088
Se -0.243 0.154 0.278 0.400 -0.168 -0.439
Sm 0.397 -0.305 -0.373 0.352 -0.072 -0.461
Sn 0.351 -0.160 -0.550 0.203 -0.180 -0.128
Tb 0.425 -0.432 -0.218 0.295 0.042 -0.489
Th 0.510 -0.534 -0.232 0.629 -0.411 -0.550
Ti* 0.499 -0.365 -0.500 -0.154 -0.233 0.455
Tl 0.077 0.151 -0.438 0.101 0.065 -0.218
Tm 0.454 -0.322 -0.474 0.322 0.020 -0.508
U 0.365 -0.346 -0.240 -0.028 -0.283 0.312
Y 0.349 -0.310 -0.257 0.375 -0.095 -0.463
Yb 0.361 -0.311 -0.281 0.353 0.019 -0.554
Zn -0.116 -0.153 0.529 -0.368 0.179 0.372
Zr 0.084 -0.218 0.189 0.262 0.033 0.366

Statistically significant values p < 0.01 are in bold
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concentration and per cent volume of the glandular lumen as well as 
between the Be (r = -0.50), Cs (r = -0.57), Pr (r = -0.36), Tb (r = -0.43), 

between the prostatic Au (r = -0.52), Cd (r = -0.48), Mo (r = 
-0.72), Ni (r = -0.48), Sn (r = -0.55), Ti (r = -0.50), Tm (r = -0.47) 

         

Bi

y = -3E-05x2 + 0,0039x + 0,0795
R2 = 0,018

0,00
0,10
0,20
0,30
0,40
0,50
0,60
0,70

20 30 40 50 60 70 80 90

Age, years

m
g/

L 
Zn

y = 0,002x3 - 0,4268x2 + 28,554x - 397,35
R2 = 0,1379

0

200

400

600

800

1000

20 30 40 50 60 70 80 90
Age, years

m
g/

L

Cd

y = -0,0001x2 + 0,0155x - 0,223
R2 = 0,2242

0,00

0,10

0,20

0,30

0,40

0,50

0,60

20 30 40 50 60 70 80 90

Age, years

m
g/

L

Stroma

y = 0,003x2 - 0,0535x + 45,809
R2 = 0,1224

0

20

40

60

80

100

20 30 40 50 60 70 80 90

Age, years

%
 o

f g
la

nd
 v

ol
um

e

Pb

y = -0,0003x2 + 0,0364x - 0,6262
R2 = 0,1102

0,0

0,5

1,0

1,5

2,0

20 30 40 50 60 70 80 90

Age, years

m
g/

L

Epithelium

y = 0,0048x2 - 0,7377x + 53,886
R2 = 0,2856

0
10
20
30
40
50
60

20 30 40 50 60 70 80 90

Age, years

%
 o

f g
la

nd
 v

ol
um

e

Sn

y = 0,0467Ln(x) - 0,1239
R2 = 0,077

0,00

0,05

0,10

0,15

0,20

0,25

20 30 40 50 60 70 80 90

Age, years

m
g/

L

Lumen

y = 0,0002x3 - 0,0372x2 + 2,2002x - 20,154
R2 = 0,1405

0
5

10
15
20
25
30
35
40

20 30 40 50 60 70 80 90

Age, years

%
 o

f g
la

nd
 v

ol
um

e

Figure 1: Individual data sets for the Bi, Cd, Pb, Sn, and Zn concentrations and the percent volume of stroma, epithelium, and lumen in the nonhyperplastic 
prostate gland of males aged 21–87 years, plotted against age, with the corresponding trend lines and the equations from which they were derived.



• Page 10 of 13 •ISSN: 2469-5742Zaichick et al. Int Arch Urol Complic 2016, 2:019

         

Stroma - Br (21-40 years)

y = -0,1549x + 48,966
R2 = 0,0046

0
10
20
30
40
50
60
70
80

0 2 4 6 8 10 12 14 16 18 20

mg/L

%
Stroma - Br (41-87 years)

y = 1,9779x + 39,697
R2 = 0,2479

0

20

40

60

80

100

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

mg/L

%

Lumen - Br (21-40 years)

y = 0,1622x + 15,225
R2 = 0,0256

0

5

10

15

20

25

30

0 2 4 6 8 10 12 14 16 18 20

mg/L

%

Lumen - Br (41-87 years)

y = -0,9945x + 25,997
R2 = 0,1178

0
5

10
15
20
25
30
35
40

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

mg/L

%
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gland of males between ages 21–40 years and between ages 41–87 years, and their trend lines obtained from linear equations.
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Co, Cr, etc in many macromolecular systems, including enzymes. 
At the same time, the replacement of REEs ions with the ions of 
alkaline earth elements is impossible [94]. In our previous study a 
significant increase of prostatic Ca concentration with age was found 
[16,19,25,26]. Moreover, it was shown an androgen-dependence of Ca 
concentration and an important role of this element in the prostate 
gland function [21,23,43]. The similarity of chemical properties of Ca 
and Sc can explain a significant increase of prostatic Sc concentration 
with age.

The limitations

To clarify the role of 54 trace elements in normal physiology 
of the prostate gland, the variation with age of their concentration 
in prostatic tissue and the relationship of these trace element 
concentrations with basic prostatic histological structures was 
investigated only in nonhyperplastic prostate glands. In future studies 
of the role of trace elements in pathophysiology of the prostate gland 
the specimens of BPH and cancerous tissues have to be included. 
Moreover, there are other chemical elements involved in normal 
metabolism and pathophysiology of the prostate gland. Thus, further 
studies are needed to extend the list of chemical elements investigated 
in this manner.

Conclusion
While the numbers of specimens  were somewhat limited, they 

were sufficient to identify the Bi, Cd, Co, Fe, Hg, Sc, Sn, and Zn 
concentration differences in the three age groups studied. The Pearson 
correlation between trace element concentrations and morphometric 
parameters allowed allocation of trace element concentrations to the 
different components of the prostate gland. Using this method, we 
demonstrated that the glandular lumen and, therefore, the prostatic 
fluid is the main pool of Zn accumulation while the stromal cells are 
the main pool of Be, Mo, Th, and Ti accumulation in the normal 
human prostate between the ages of 21 to 40. We also found that after 
the age of 40 there are significant changes in the distribution of trace 
elements in the prostate. Lastly, we found that there is a significant 
tendency for an increase in Bi, Cd, Co, Fe, Hg, Sc, Sn, and Zn 
concentration with age in the prostate tissue of healthy individuals. 
All these factors are very likely to contribute to the age-related benign 
enlargement and potentiate malignant transformation of the prostate.
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