

Outcome of Some of the Many *Aedes Albopictus* (Skuse, 1895) Mosquito Encounters with Man

Daniel Benharroch^{1*} and Yane-Bianca Benharroch²

¹Department of Pathology, Soroka University Medical Center, Israel

²Kibbutz Sde-Boker, Israel

***Corresponding author:** Prof. Daniel Benharroch, Department of Pathology, Soroka University Medical Center, 1, Itshak Rager Boulevard, PO Box 151, Beer-Sheva 84101, Israel, Tel: +972-50-7579140, Fax: +972-8-6232770, E-mail: dbenharroch@yahoo.com

Abstract

Aedes albopictus, the Asian tiger mosquito, has lately become prominent, globally, while showing a marked "migratory" capacity. We have scrutinized the many consequences of the encounters between the Asian tiger mosquito and humans, and have chosen to review several of them. It seems inevitable that this mosquito be more and more present in our lives. It is a tremendous nuisance to man through its bite. However, several arboviral infections are the main consequences of these confrontations, encompassing all ranges of severity. Few means of prevention, however, have proven successful.

Keywords

Aedes albopictus, Asian tiger mosquito, Arboviral infections, Chikungunya, Dengue, Yellow fever

Introduction

The Asian tiger mosquito, the *Aedes albopictus* (*Ae. albopictus*) (Skuse, 1895) (Diptera: Culicidae) originates, as expected from its current name from the Far East. Its "tiger" surname was given to it, due to white dots on its legs and white bands on its body. Although a small insect, usually less than one centimeter in length, the *Ae. albopictus* is a huge nuisance to mammals and especially to man, but it has been considered to feed also, to some extent on birds. It seems that foraging by the female *Ae. albopictus*, occurring during day light hours, is for the least, unpredictable.

The Asian tiger mosquito flies no more than 100-200 m at one time. Nevertheless, it is one of the most invasive of mosquitoes, being today widespread to most areas of the globe. Its spreading capacity is basically of a passive nature, as by proliferating in small water collections in old tires. The Asian tiger mosquito has been responsible, among many others, for the propagation of two arboviral infections, chikungunya and dengue. It seems that for both these viral infections, *Aedes egypti*, predominates as a vector over *Ae. albopictus*. It is generally agreed upon that the Asian tiger mosquito plays little or no role in the malaria and the West Nile virus fever pathogenesis.

In this text, we present an overview of particular facets of the

interaction between the *Ae. albopictus* and humans, while a fierce migration of the insect is taking place.

Aedes Albopictus (Skuse, 1895)

The *Ae. albopictus* has progressively invaded temperate regions of Europe and of the Americas. The mosquito is the cause of severe nuisance and may transmit several arboviral infections. Its capacity to harm humans may be related with the age of the insect, irrespective of its physiological status [1]. So far, European countries confirm that the most frequent arboviral diseases transmitted by the *Ae. albopictus* mosquito are due to imported cases [2,3].

The introduction of *Ae. albopictus* into Southern Europe occurred around the 1980s [4]. By now, the Asian tiger mosquito has been identified as one of the fastest spreading of all and one of the world's worst invasive alien species [5,6]. An increased colonization of urban areas in Europe, related with a preference with the *Ae. albopictus* for shaded areas has been observed [7]. The anthropophilism of the *Ae. albopictus* is maximal in high density urban areas and decreases progressively with increasing vegetation. The "migratory" propensity of *Ae. albopictus*, being in fact more of a passive process, together with its being a vector for several arboviruses, determines its transformation into a severe public health hazard [8].

Aedes albopictus was found in Israel to breed in tree holes adequately shaped to retain water for long enough periods [9]. Among the many attractant products for the Asian tiger mosquito, an interesting one has been found to be the carob seed pod, which represents a rich source of sugar for the mosquito [10].

The *Ae. albopictus* is believed to be ubiquitous, mainly foraging on mammals, mostly humans, but only very occasionally on birds. A recent study did not find evidence of avian-related blood among 165 blood meals detected in the Asian tiger mosquito [11]. This might preclude dissemination of the *Ae. albopictus* by bird migration. Female *Ae. aegypti* which are also invasive, showed feeding inhibition, both for sugar and blood, when exposed to male *Ae. albopictus*. In contrast, the female Asian tiger mosquito foraging did not suffer from exposure to males of either species. This may be one important mechanism of displacement of *Ae. aegypti* by the Asian tiger mosquito [12].

Citation: Benharroch D, Yane-Bianca B (2016) Outcome of Some of the Many *Aedes Albopictus* (Skuse, 1895) Mosquito Encounters with Man. Clin Med Rev Case Rep 3:145

Received: October 19, 2016: **Accepted:** November 29, 2016: **Published:** December 03, 2016

Copyright: © 2016 Benharroch D, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

High temperature and poor feeding during development of mosquitoes will usually result in small adults. The frequency of blood meals and of host seeking is inversely correlated with body size for the *Ae. albopictus*. This results in small mosquitoes having more contacts with the host [13]. A marked increase in a large variety of mosquito species is occurring in Europe and the USA. Many of them belong to the same invasive species as the Asian tiger mosquito.

Arboviral Infectious Diseases

Dengue and chikungunya

These two mosquito-borne viral diseases are spreading persistently around the globe. Dengue, a frequent febrile illness in the tropical areas of Africa, is now disseminated to the Americas and this encompasses all the four serotypes of the dengue virus. This disease has also reached areas in Southern Europe during the summer [14].

Dengue belongs to the Flavivirus group of zoonoses, together with yellow fever and Zika fever. Their transmission includes primates as reservoirs and *Aedes* mosquitoes as vectors. However, human-to-human transmission has also been reported [15]. As a rule, dengue is a mild acute febrile disease and may present with headache and myalgia (now defined as "dengue"). In some cases, more frequently in children, the disease will present with abdominal pain, lethargy, bleeding, hepatomegaly and thrombocytopenia. These symptoms and signs herald a severe development, often lethal ("severe dengue") [16]. All ranges of hepatotoxicity may be found [17].

The chikungunya virus, originating from Central Africa (isolated cases and small outbreaks) or from Asia (large epidemics), has disseminated recently, first to islands of the Indian Ocean, then, to the Indian Subcontinent and to Italy. Last, it has reached the American continent, via the Caribbean.

Aedes aegypti predominates as the vector of both viruses. However, *Ae. albopictus* catches up rapidly, promoting their spread in temperate climate. Among the main factors fostering the spread of both viruses, are improved viral fitness, changes in global climate and increased urbanization [14].

Chikungunya is a rapidly emerging arboviral disease caused by an Alphavirus of the Togaviridae family. The patient temperature rises rapidly, accompanied by a symmetrical arthralgia and often by extreme fatigue. Relapses are frequent. Currently, this infectious disease is being reported globally [18].

Yellow fever

Yellow fever is caused by a Flavividae arbovirus, transmitted by *Aedes* mosquitoes. This has occurred mainly in Africa. In Central Africa, *Ae. aegypti* is the main vector of yellow fever in urban areas. However, *Ae. albopictus* is also significantly involved [19]. On the other hand, one of the main factors why yellow fever and dengue coexist in some parts of the world (Africa), but not in others (Asia): in Africa, *Ae. albopictus* which competes with *Ae. aegypti*, shows a relatively low prevalence. While the Asian variant of *Ae. aegypti* is to some degree incompetent in transmitting yellow fever [20]. Nevertheless, *Ae. albopictus* has largely replaced *Ae. aegypti* in Europe [21] and in the Americas [22].

Zika virus

The Zika virus had been isolated in several genera of mosquitoes and in non-human primates of the African and Asian forests for many years. However, recently reported epidemics, starting from Micronesia in 2015 and reaching the Northeastern areas of Brazil, Central America and the Caribbean have occurred. It is transmitted by infested *Ae. aegypti* and *Ae. albopictus* [23]. Isolated cases imported from Polynesia were described in Italy.

The clinical picture includes low grade fever, malaise, conjunctivitis, myalgia, arthralgia and lymphadenopathy. In these cases, the sera are diagnostic and show a cross-reactivity with dengue virus antigens. In this study, the vector was most frequently the

Ae. albopictus [24]. This association was confirmed in recent Zika fever cases from Gabon, highlighting the presence of the Asian tiger mosquito in Africa [25]. In the last several few months, involvement of the Zika virus in complications of the contamination of pregnant women in Venezuela and Brazil has been reported. These women gave birth to new born babies with congenital malformations, mainly microcephaly and with failure to thrive [26].

La crosse encephalitis

This is one of the most frequent causes of pediatric arboviral encephalitis in the USA. First described in Tennessee in 1997, it is transmitted, in addition to autochthonous vectors (*Ae. triseriatus*), by *Ae. albopictus* and *Ae. Japonicus* [27,28].

Microfilarial infections

Several species of microfilaria are transmitted by mosquitoes. *Dirofilaria* species are transmitted by mosquito bites and may cause the human pulmonary as well as several others lesions. The Asian tiger mosquito may play an important role in this contamination [29-32].

Malaria and west nile virus fever

Aedes albopictus is not considered as a vector of malaria [33-35].

In spite of statements to the contrary [36], it seems evident that *Ae. albopictus* has not been recognized as a vector of the West Nile virus [37].

Nevertheless, as the Asian tiger mosquito invades Africa and in fact, the world, these statements may be altered.

Immunology of asian tiger mosquito

Using appropriate antibodies against *Ae. albopictus* salivary proteins, which reveal a strong antigenicity, allergic reactions occur, regardless of the means of exposure. Near 70% of these proteins are related with blood feeding, including adenosine deaminase and serpin [38].

Skin reactions are observed following mosquito bites which vary from the relatively innocuous mosquito allergy, due to reactions to the allergens in the mosquito saliva. This may include severe local, and at times systemic reactions to the bite [39].

On the other hand hypersensitivity to the mosquito bite, which is one form of the chronic active infections by Epstein-Barr virus (EBV) may be observed. This rare condition, affecting predominantly children and young adults, evokes, in addition to a severe local skin reaction, generalized symptoms, like high fever and regional lymphadenopathy, hepatosplenomegaly, and is sometimes associated with hematological malignancies [40-43]. This reaction may be due to an antigen-induced activation of basophils or mast cells by a mosquito associated IgE.

Unlike mosquito allergy which is an immediate allergic skin reaction, IgE-dependent, hypersensitivity to mosquito bites causes severe symptoms resulting probably from mosquito-related CD4+ T cells and EBV-infected NK cells [44].

Conclusions

Aedes albopictus (Skuse, 1895) (Diptera: Culicidae) presents several peculiarities, the most striking being a "migratory" capacity, rarely equaled but in fact a passive process. In addition the *Ae. albopictus* may lay its eggs in small pockets of water, as in used tires or hollow trees. Redistribution of the tires may promote dissemination. The mosquito causes a severe nuisance, but most arboviral infectious diseases carried by this species, are more critical, though of variable severity. This mosquito's bite, like that of many others, may cause a simple mosquito allergy and in a minority of victims, hypersensitivity to mosquito bites, which is associated with EBV infection, a severe local and systemic reaction and at times with hematological malignancies.

Acknowledgements

We thank Kibbutz Sde-Boker for their help during the preparation of this manuscript.

Conflict of Interest

The authors have declared: "that no conflict of interest exists".

References

1. Iovinella I, Caputo B, Michelucci E, Dani FR, della Torre A (2015) Candidate biomarkers for mosquito age-grading identified by label-free quantitative analysis of protein expression in *Aedes albopictus* females. *J Proteomics* 128: 272-279.
2. Valerio L, Roure S, Fernandez-Rivas G, Ballesteros AL, Ruiz J, et al. (2015) Arboviral infection diagnosed in European areas colonized by *Aedes albopictus*. *Travel Med Infect Dis* 13: 415-421.
3. Dinu S, Panculescu-Gatej IR, Florescu SA, Popescu CP, Sirbu A, et al. (2015) Molecular epidemiology of dengue fever cases imported into Romania, 2008-2013. *Travel Med Infect Dis* 13: 69-73.
4. Marini F, Caputo B, Pombi M, Tarsitani G, della Torre A (2010) Study of *Aedes albopictus* dispersal in Rome, Italy, using sticky traps in mark-release-recapture experiments. *Med Vet Entomol* 24: 361-368.
5. Boes KE, Ribeiro JM, Wong A, Harrington LC, Wolfner MF, et al. (2014) Identification and characterization of seminal fluid proteins in the Asian tiger mosquito, *Aedes albopictus*. *PLoS Negl Trop Dis* 8: e2946.
6. Martinez-de la Puent J, Munoz J, Capelli G, Montarsi F, Soriguer R, et al. (2015) Avian malaria last supper: identifying encounters between parasites and the invasive Asian mosquito tiger and native mosquito species in Italy. *Malar J* 14: 32.
7. Cianci D, Hartemink N, Zeimes CB, Vanwambeke SO, Ienco A, et al. (2015) High resolution spatial analysis of habitat preference of *Aedes albopictus* in urban environment. *J Med Entomol* 52: 329-335.
8. Bonizzoni M, Gasperi G, Chen X, James AA (2013) The invasive mosquito species *Aedes albopictus*: current knowledge and future perspectives. *Trends Parasitol* 29: 460-468.
9. Muller GC, Kravchenko VD, Junnila A, Schlein Y (2012) Tree-hole breeding mosquitoes in Israel. *J Vector Ecol* 37: 102-109.
10. Muller GC, Xue RD, Schlein Y (2010) Seed pods of the carob tree *Ceratonia siliqua* are a favored sugar source for the mosquito *Aedes albopictus* in coastal Israel. *Acta Trop* 116: 235-239.
11. Faraji A, Egizi A, Fonseca DM, Unlu I, Crepeau T, et al. (2014) Comparative host feeding patterns of the Asian tiger mosquito, *Aedes albopictus*, in urban and suburban Northeastern USA and implication for disease transmission. *PLoS Negl Trop Dis* 8: e3037.
12. Soghian J, Gibbs K, Stanton A, Kaiser R, Livdahl T (2015) Sexual harassment and feeding inhibition between two invasive dengue vectors. *Environ Health Insights* 8: 61-66.
13. Farjana T, Tuno N (2013) Multiple blood feeding and host-seeking behavior in *Aedes aegypti* and *Aedes albopictus* (Diptera: Culicidae). *J Med Entomol* 50: 838-846.
14. Rezza G (2014) Dengue and chikungunya: long distance spread and outbreak in naive areas. *Pathog Glob Health* 108: 349-355.
15. Choumet V, Depres P (2015) Dengue and other flavivirus infections. *Rev Sci Tech* 34: 473-478.
16. Wakimoto MD, Camacho LA, Guaraldo L, Damasceno LS, Brasil P (2015) Dengue in children: a systematic review of clinical and laboratory factors associated with severity. *Expert Rev Anti Infect Ther* 13: 1441-1456.
17. Prommalikit O, Thisyakorn U (2015) Dengue virus virulence and disease severity. *Southeast Asian Trop Med Public Health* 46: 35-42.
18. Burnett MW (2014) Chikungunya. *J Spec Oper Med* 14: 129-130.
19. Ngoagouni C, Kamgang B, Manirakiza A, Nangouma A, Paupy C, et al. (2012) Entomologic profile of yellow fever epidemics in the Central African Republic, 2006-2010. *Parasit Vectors* 5: 175.
20. Amaku M, Coutinho FA, Massad E (2011) Why dengue and yellow fever coexist in some areas of the world and not in others? *Biosystems* 106: 111-120.
21. Reiter P (2010) Yellow fever and dengue: a threat to Europe. *Euro Surveill* 15: 19509.
22. Luorenço de Oliveira R, Vazeille M, de Filippis AM, Failloux AB (2003) Large genetic differentiation and low variation in vector competence for dengue and yellow fever viruses of *Aedes albopictus* from Brazil, the United States and the Cayman Islands. *Am J Trop Med Hyg* 69: 105-114.
23. Marcondes CB, Ximenes MF (2015) Zika virus in Brazil and the danger of infestation by *Aedes* (Stegomyia) mosquitoes. *Rev Soc Bras Med Trop* 49: s0037.
24. Zammarchi L, Stella G, Mantella A, Bartolozzi D, Tappe D, et al. (2015) Zika virus infection imported to Italy: clinical, immunological, virological findings, and public health implications. *J Clin Virol* 63: 32-35.
25. Grard G, Caron M, Mombo IM, Nkoghe D, Ondo SM, et al. (2014) Zika virus in Gabon - 2007: a new threat from *Aedes albopictus*. *PLoS Negl Trop Dis* 8: e2681.
26. Citl-Dogan A, Wayne S, Bauer S, Ogunyemi D, Kulkarni SK, et al. (2016) The Zika virus and pregnancy: evidence, management and prevention. *J Matern Fetal Neonatal Med* 7: 1-41.
27. Westby KM, Fritzen C, Paulsen D, Poindexter S, Moncayo AC (2015) La Crosse encephalitis virus infection in field-collected *Aedes albopictus*, *Aedes japonicus* and *Aedes triseriatus* in Tennessee. *Am J Mosq Control Assoc* 31: 233-241.
28. Gerhardt RR, Gottfried KL, Apperson CS, Davis BS, Erwin PC, et al. (2001) First location of La Crosse virus from naturally infected *Aedes albopictus*. *Emerg Infect Dis* 7: 807-811.
29. Weaver SC, Reisen WK (2010) Present and future arboviral threats. *Antiviral Res* 85: 328-345.
30. Paras KL, O'Brien VA, Reiskind MH (2014) Comparison of the vector potential of different mosquito species for the transmission of heartworm, *Dirofilaria immitis* in rural and urban areas, in and around Stillwater, Oklahoma, USA. *Med Vet Entomol Suppl* 1: 60-67.
31. Genchi C, Rinaldi L, Mortarino M, Genchi M, Cringoli G (2009) Climate and *Dirofilaria* infection in Europe. *Vet Parasitology* 163: 286-292.
32. Cancrini G, Romi R, Gabrielli S, Toma L, Di Paolo M, et al. (2003) First finding of *Dirofilaria repens* in a natural population of *Aedes albopictus*. *Med Vet Entomol* 17: 448-451.
33. Ali WN, Ahmad R, Nor ZM, Ismail Z, Lim LH (2011) Population dynamics of adult mosquito in malaria endemic villages of Kuala Lipis, Pahang, Malaysia. *Southeast Asian J Trop Med Public Health* 42: 259-267.
34. Shaffner F, Medlock JM, Van Bortel W (2013) Public health significance of invasive mosquitoes in Europe. *Clin Microbiol Infect* 19: 685-692.
35. Guo S, Ling F, Hou J, Wang J, Fu G, et al. (2014) Mosquito surveillance revealed lagged effect of mosquito abundance on mosquito-borne disease transmission. *PLoS One* 9: e112975.
36. Haddad N, Mousson L, Vazeille M, Chamat S, Tayeh J, et al. (2012) *Aedes albopictus* in Lebanon, a potential risk of arbovirus outbreak. *BMC Infect Dis* 12: 300.
37. Ogden NH, Milka R, Caminade C, Gachon P (2014) Recent and projected future climatic suitability of North America for the Asian tiger mosquito, *Aedes albopictus*. *Parasit Vectors* 7: 532.
38. Doucoure S, Cornelie S, Patramool S, Mouchet F, Demetre E, et al. (2013) First screening of *Aedes albopictus* immunogenic salivary proteins. *Insect Mol Biol* 22: 411-423.
39. Peng Z, Simons FE (2007) Advances in mosquito allergy. *Curr Opin Allergy Clin Immunol* 7: 350-354.
40. Chiu TM, Lin YM, Wang SC, Tsai YG (2016) Hypersensitivity to mosquito bites as the primary manifestation of an Epstein-Barr virus infection. *J Microbiol Immunol Infect* 49: 613-616.
41. Asada H (2007) Hypersensitivity to mosquito bites: a unique pathogenic mechanism linking Epstein-Barr virus infection, allergy and oncogenesis. *J Dermatol Sci* 45: 153-160.
42. Tomita N, Kanamori H, Fujimaki K, Fujisawa S, Ishigatubo Y (2004) Epstein-Barr virus associated extranodal NK/T-cell lymphoma following mosquito bites in an elderly patient without prior hypersensitivity. *Leuk Lymphoma* 45: 2153-2155.
43. Peng Z, Simons FE (2004) Mosquito allergy: immune mechanisms and recombinant salivary allergens. *Int Arch Allergy Immunol* 133: 198-209.
44. Sakakibara Y, Wada T, Muraoka M, Matsuda Y, Toma T, et al. (2015) Basophil activation by mosquito extracts in patients with hypersensitivity to mosquito bites. *Cancer Science* 106: 965-971.